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Abstract

Achieving robot autonomy is a fundamental objective in Mobile Robotics.
However in order to realise this goal, a robot must be aware of its loca-
tion within an environment. Therefore, the localisation problem (i.e.,the
problem of determining robot pose relative to a map of its environment)
must be addressed. This paper proposes a new biology-inspired approach
to this problem. It takes advantage of models of species reproduction to
provide a suitable framework for maintaining the multi-hypothesis. In ad-
dition, various strategies to track robot pose are proposed and investigated
through statistical comparisons.

The Bacterial Colony Growth Algorithm (BCGA) provides two dif-
ferent levels of modelling: a background level that carries on the multi-
hypothesis and a foreground level that identifies the best hypotheses ac-
cording to an exchangeable strategy. Experiments, carried out on the
robot ATRV-Jr manufactured by iRobot, show the effectiveness of the
proposed BCGA.

1 Introduction

A mobile robot must be able to safely interact with its environment in order to
accomplish any task. Therefore, when considering a robotics control architec-
ture, a localisation module should always be included. The aim of this module
is to provide reliable pose information for the robot even in the presence of noisy
data and unpredictable environmental interactions. Due to the difficulty of ob-
taining reliable pose information, the localisation problem has been a highly
active field of research over the last two decades.

Localisation can be broken down into three different research problems: po-
sition tracking, global localisation and kidnap. However, due to the specific
nature of these problems, it has been proven difficult to find a general solution
for all three.

A widely applied framework describes the localisation problem as a stochas-
tic estimation problem. In fact, by describing the robot pose as a probability
distribution (belief ), the localisation problem can be viewed as an estimation of
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the belief over the state space of poses, conditioned on the data coming from
sensors.

The most famous approach based on this idea is probably the Kalman Filter
[11]. It has been applied extensively to solve the position tracking problem,
i.e., an instance of the localisation problem in which prior knowledge about
the initial pose of the robot is available. The Kalman Filter exploits a Gaussian
distribution to describe the robot pose, with the advantage of requiring only two
parameters: the mode (describing the expected robot pose), and the variance
(representing the accuracy of the estimation). However, this simplicity limits
the algorithm when the ability to represent the multi-hypothesis is required, as
in the global localisation problem, i.e., an instance of the localisation problem
in which no prior knowledge is provided about the initial robot pose. This
problem can be overcome by parallelising methodologies previously introduced
to solve the tracking problem. In [2], for instance, several Gaussian distributions
have been exploited to represent the probability distribution of the robot in the
environment; while in [10] a hybrid localisation method, using multiple Kalman
Filters for hypothesis tracking and probability theory for evidence fusion has
been proposed.

A different approach, relying on a grid based discretisation of the state space,
was introduced in [4]. Here, the key idea is to build a certainty grid map, as
explained in [15], then to accumulate the posterior probability in each cell ac-
cording to the real robot pose and data coming from the sensors. The resulting
algorithm provides reliable maps, but suffers from excessive computational over-
head [3].

Another approach, based on Monte Carlo Integrations Methods [8], relies
on a weighted mass-point discretisation of the probability distribution. Monte
Carlo methods can be used to approximate a large number of probability distri-
butions, providing several interesting advantages such as flexibility and paralleli-
sation in execution. However, these methods suffer from the degeneracy problem,
i.e., the problem of having a majority of samples with negligible weight after
few iterations [1]. This phenomenon turns out to be very tricky when facing
the kidnap problem, i.e., an instance of the localisation problem in which a well-
localised robot is suddenly carried to an arbitrary location during its operation
[7]. A solution to this problem is to increase the number of samples, but this
method suffers from significant computational overhead. A better way to ap-
proach the degeneracy phenomenon is to introduce a resampling step in order to
augment the diversity among particles [13]. Alternatively, a suitable candidate
for the importance function can be devised which minimises the variance of the
importance weight conditioned on data [6].

An alternative approach that does not rely on the Bayesian framework has
been proposed in [9]. In this paper, a spatially structured genetic algorithm
has been conceived. It uses the complex network theory for the population
deployment and exploits the properties of several network models, e.g., small-
world or scale-free, to provide an effective exploration of the environment along
with good tracking capabilities.

2



In this paper, we introduce a new biology-inspired approach. The framework,
called the Bacterial Colony Growth Algorithm, is composed of two different
levels of execution: a background level and a foreground level. The first takes
advantage of models of species reproduction to carry on the multi-hypothesis,
while the second selects the best hypotheses according to various specialised
strategies which are usually problem dependent. Indeed, this modular structure
makes the algorithm very adaptive while considering both different scenarios
and objectives.

Thus far, an algorithm for solving multimodal optimisation problems and for
tracking multiple optima in a dynamic environment using the notion of species
has been proposed in [16]. While in this work the authors simply propose a
modification of a Particle Swarm algorithm [12], the algorithm proposed here
uses models of species evolution as the underlying paradigm for building a new
framework able to carry on the multi-hypothesis.

The paper is structured as follows: a brief overview of the required theoretical
background is provided in Section 2; the proposed Bacterial Colony Growth
Algorithm is described in 3; the problem settings, simulations and experimental
results are given in 4 and finally, the conclusion and future perspective are
discussed in 5.

2 Theoretical Background

2.1 Robot, Sensors and Environment Modelling

The robot pose can be uniquely determined in an environment by means of the
robot position (x, y) and orientation (φ). In this paper the unicycle model has
been adopted as the kinematic model for the robot. Such a model is described
as follows:

xk = f(xk−1, uk−1, nk−1)

= xk−1 +





cos φ̃k−1 0

sin φ̃k−1 0
0 1



uk−1 + nk−1 (1)

where, xk = [rx, ry, rφ] is the robot pose at time-step k (state), uk−1 is the
input at time k − 1 and nk−1 is a white zero mean noise at the same time-
step. In particular, the system input is uk = (δsk, δθk), where δsk is the vehicle
displacement and δθk is the rotation during the sample time interval δtk, both
measured by proprioceptive sensors.

The robot has been equipped with a set of laser rangefinders arranged in a
360◦pattern. The related observation model, taking into account the fact that
the environment has been described through a set M of segments, is:

zj,k = h(xk,M)

=
|arl

x
j + brl

y
j + cr|

|ar cos θj + br sin θj |
(2)

where (ar, br, cr) are the coefficients of the r-th segment and (lxj , lyj , θj) is the
configuration of the laser beam detecting the segment in question.
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2.2 Models of Species Evolution

The evolution of species has been modelled mathematically with different ap-
proaches. Historically, systems of deterministic differential equations suitable
for large population dynamics were the first proposed [14] [18] [19]. More re-
cently, in order to model in-vivo reactions such as metabolic or gene regulations,
stochastic differential equations [5] and lattice gas automata using Monte Carlo
Algorithms [17] have been introduced.

2.2.1 Competitions and Cooperation among Cohabitant Species

The basic model (apart from the Malthusian one [14]) for describing species
evolution is the logistic model, introduced by Verhulst [18]. In this model, the
Malthusian natality factor r is a linear function of the population numerousness
N(t)

f(N(t)) = r − r′N(t) (3)

where r and r′ are opportune positive constants typical of the population. From
the above equation, it follows that the population grows when the natality rate is
positive and the numerousness is not too large (below r/r′). Eq. (3) describes an
auto-regulation linked to the numerousness in the natality process. Introducing
eq. (3) in the Malthusian equation dN

dt
= RN(t), where R = r−m is the growth

rate, m being the mortality factor, the logistic equation is defined as:

dN(t)

dt
= (r − r′N(t) − m)N(t) = (R − r′N(t))N(t) (4)

The ratio K = R
r′ is the carrying capacity, and the solution is:

N(t) =
K

1 + ( K
N(0) − 1)e−Rt

(5)

In an evolutionary framework, different species compete for the same resources
in order to survive. In other words, the growth of different species is limited
by a common factor. Supremacy (survival) of one species over the others is
determined by natural selection. The logistic equation previously introduced
for a single species can be properly modified to model such competition. For
two species, assuming the overall numerousness ((N1(t)+N2(t))) as the common
factor, the following equations can be derived:

dN1(t)

dt
=

(

1 −
(N1(t) + N2(t))

K1

)

R1N1(t) (6)

dN2(t)

dt
=

(

1 −
(N1(t) + N2(t))

K2

)

R2N2(t) (7)

Subsequently, the predator-prey was introduced by Volterra and Lotka [19]. Here
the authors consider an environment composed by two populations in which
predators eat prey.

dH(t)

dt
= (a − bP (t))H(t) (8)

dP (t)

dt
= (kH(t) − c)P (t) (9)
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Depending on the constant values, the populations can present different be-
haviours, including periodic ones.

Competition and cooperation can be modelled in a more general framework,
where different species are living in the same environment. Consider again a
biological system comprised of two populations P1, P2 and a limited resource
that both populations need. To use the resource, P1 and P2 begin to compete.
Let’s assume that if one population extinguishes, the other one grows according

to logistic law dPi(t)
dt

= aiPi(t)− biP
2
i (t). Moreover, in the cohabitation, there is

an encounter term cP1(t)P2(t) that has a control effect. The evolution is then
described by:

dP1(t)

dt
= (a1 − b1P1(t) − c1P2(t))P1(t) (10)

dP2(t)

dt
= (a2 − b2P2(t) − c2P1(t))P2(t) (11)

where ais are the growth rates, bis are the intra-specific competition coefficients,
cis are inter -specific competition coefficients.

In a similar way, a model for the cooperation can be designed in which a
population will extinguish if the other one is lacking. In this model, the ge-
netic evolution of species (either by sexual reproduction, i.e. genetic mixtion,
or mutation) is not explicitly defined. In order to handle this, several solutions
can be presented. One is to allow new speciation and consider different evolved
genetic strains of the same species as different competitive-cooperative popula-
tions. Another is to introduce correction terms in the reproduction rates as a
result of the overall evolution of a species (interpreted as modified replication
capacity).

3 The Bacterial Colony Growth Algorithm

A major issue of the global localisation problem is maintaining a set of hy-
potheses about the robot pose until a reasonable confidence level of estimation
is reached. The Bacterial Colony Growth Algorithm takes this issue into ac-
count. As a result, it provides two levels of modelling:

• The Background Level that provides a suitable framework for modelling
and carrying on the multi-hypothesis.

• The Foreground Level exploits several exchangeable strategies to track the
robot pose.

3.1 Background Level: Multi-Hypothesis Modelling

The models of species reproduction introduced above can be effective in de-
scribing and maintaining the multi-hypothesis. In this context, a population
of hypothetical robots is considered. Each robot is seen as a bacterium in a
biological environment, say Escherichia Coli, which reproduces asexually. One
interesting phenomenon observed in the unicellular organisms is the chemo-
taxis response, in which the cellular movement is oriented towards or away from
a chemical compound. Mobile bacteria as E. Coli swim towards areas with a
higher concentration of nutrient compounds like sugars (attractors) or amino
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acids, and away from higher concentrations of noxious compounds (repulsors),
so that its motivation is similar to that of a particle in a vector field based
on a gradient method. Clearly, the environment is composed of different areas
characterised by compounds and concentrations which vary over time. Another
interesting characteristic of protozoa is that they can form colonies and aggre-
gate in specific regions. Conversely, when no favourable conditions are present,
they wait latently for better times to reproduce (bet-hedging).

In the mobile robot localisation context, the nutrient areas represent regions
where the measurements −→mrt

, provided by the real robot, match with some of
the population estimated measurements −→mpt

s (and bad matches define noxious
areas). Moreover, the kinematic model allows bacterial movement. At the same
time, attractive and repulsive areas change dynamically according to the real
robot movements. In the nutrient areas, the bacteria (robots) can reproduce
and form colonies (clusters of robot hypotheses), whose growth is limited by
the total resources of the environment and by the colony size. Thus, a natural
way of maintaining the multi-hypothesis is achieved. In addition, the growth
limitation curbs the unbounded growth of the best hypotheses as well as the
extinction of other small-medium size colonies.

Specifically, when a bacterium is in a nutrient area, its chances of reproducing
and forming a colony are higher while its replication chances are lowered by
overpopulation. Moreover, if the nutrient area is shifting somewhere else, the
colony first tries to expand slightly (dispersion), then starts to disintegrate if
nutriment is no longer available (the environment becomes noxious), as can
be clearly observed when a kidnap occurs. Finally, when attractive areas are
unavailable or unreachable, the bacteria become latent and stop reproducing,
wandering until suitable conditions are found.

The bacterial colony growth algorithm (BCGA) is shown in detail in Algo-
rithm 1. The reproduction policy for each bacterium-robot is driven by both
the match with the real robot measurements and the colony density in the local
area. In detail, the nutrient or noxious environment condition is described by
the formula:

f1(−→mpj,t
,−→mrt

) =
1

M

M
∑

i=1

e−
(mi,pj,t

−mi,rt)
2

2σ2 (12)

where σ is tuned coherently with the robot measure confidence intervals.
The colony density is defined as:

f2(pj , P ) = min{1,
1

νN

N
∑

i=1

(

e−
‖pj−pi‖

2

2σ2

)

} (13)

where ‖ · ‖ is the Euclidean distance between two points, with ν ∈ [0, 1] and σ
controlling the maximum colony size and the spatial radius respectively.

If a bacterium in a determined spatial radius is considered as an individual
in a species Si (colony), the corresponding deterministic differential equation
which holds for large populations is:

dSi

dt
= f1(Si)



1 −



f2(Si, N) +
∑

k 6=i

f2(Sk, N)







Si (14)

Note that if f2(Si) is approximated with Si

N
, the logistic law is obtained while

the growth is limited by the density and the size of the other colonies, with
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Algorithm 1: Bacterial Colony Growth Algorithm

Data: Pt = {p1,t . . . pN,t}
Result: Pt+1 = {p1,t+1 . . . pN,t+1}

i = 1;
while (i ≤ N) do

latency flag l = TRUE;
j = 1;
while (j ≤ N ∧ i ≤ N) do

generate r ∈ U [0, 1];
calculate f1(−→mpj,t

,−→mrobott
) = n ∈ [0, 1];

calculate f2(pj,t, Pt+1) = d ∈ [0, 1];
if (r < n · (1 − d)) then

pi,t+1 = reproduction(pj,t, n);
i = i + 1;
l = FALSE;

end

j = j + 1;
end

if (l = TRUE) then
pi,t+1 = betHedging(Pt);
i = i + 1;

end

end

∑

k Sk ≤ N as a boundary condition. Here it is assumed that a colony is de-
termined by a small radius in which nutrient conditions and density can be
considered constant. If a bacterium reproduces out of this radius, then it is
considered either migrating to another colony or forming a new one. The spa-
tial reproduction of a bacterium p depends on the environmental condition: if
favourable, the bacterium reproduces in a small neighbourhood; otherwise it
migrates according to a normal distribution, whose variance is inversely propor-
tional to the nutriment conditions.

reproduction(p) =











xp = N (xp, σ1

f1(p) )

yp = N (yp,
σ1

f1(p) )

ϑp = N (ϑp,
σ2

f1(p) )

(15)

Note that as f1(p) approaches zero, the normal distribution tends to the uniform
one: the bacterium is randomly dragged, wandering for attractive areas and the
bet-hedging strategy is achieved.

This behaviour turns out to be very effective, in particular when a robot is
already roughly localised and a kidnap event occurs. In this case, as soon as
the hypothesis measurements no longer match the real one, the reproduction
rules at the base of the BCGA will provide an immediate response to the kid-
nap. That is, colonies will start to expand in a Gaussian way with a standard
deviation proportional to the matching criteria. Moreover, since a kidnap is
a “drastic”event when compared to the most common sensor problems (such
as the inability of a laser range-finder to deal with glass walls), the standard

7



deviation will approach zero more quickly, providing an automatic resampling
of the search-space. In this way, a complete “reset” of the environmental condi-
tions is achieved, enabling the algorithm to look in areas previously considered
noxious as well. Indeed, this approach is far more innovative than the Monte
Carlo Filter (MCF), as no additional heuristic is required to “sense” the kidnap
event since it is automatically handled by the dynamics of the equations.

3.2 Foreground Level: Multi-Hypothesis Choice and In-

terpretation

The competitive logistic model presented in the last section and its implementa-
tion within the BCGA represent a simple but flexible model for multi-hypothesis.
Depending on the problem issues, a set of more complex equations and corre-
sponding behaviours can be devised, as shown below in some practical examples.
In the global localisation problem, it is often the case that the hypothesis choice
strategy is directly related to the algorithm. Strategies might include maximum
probability, maximum fitness, et cetera. In a wider context, referring to sensor
fusion, the multi-hypothesis characterisation and its interpretation can be di-
vided and independently carried out. More specifically, for any general problem
setting, two possible strategies can be devised:

• Augment the complexity of species evolution model and keep a naive de-
cision strategy.

• Keep the species evolution model simple and design a set of more accurate
decision strategies using the distributions resulting from a simple BCGA.

Augmenting the model complexity requires a deeper investigation of the robot
dynamics and behaviours related to the environment and the sensor measure-
ments. Conversely, while a more simplistic model might be less robust in carry-
ing on the multi-hypothesis, an accurate foreground strategy could compensate
for this shortcoming. It is worth noting that the decision to modify the repro-
duction equation or the hypothesis choice depends highly on the experiment
scenario. If the robot measurements are reliable, a naive reproduction scheme
may be sufficient when combined with an accurate kinematic model. If the
measurements are not sufficiently reliable, as in the case of laser sensors striking
glass or when complex robot movements lead to phenomena such as sliding, the
policy must be further investigated.

Choosing the best hypothesis is a good example of naive foreground strat-
egy. In the case of the BCGA, the densest colony within the most nutrient
area is selected. Unfortunately, this solution can lead to unrealistic optimum
fluctuations. A more robust technique is achieved by introducing a weighted
mobile temporal mean of the most likely hypotheses. If the aim is to preserve
all plausible hypotheses, a proper multi-tracking strategy might be considered,
e.g., performing a clusterisation over the colonies and describing the trajectory
of each hypothesis by the barycentre of a cluster. Alternatively, the bacterial
reproduction schema might be modified when sensor data are known to be un-
reliable.
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In this paper, three different policies have been investigated:

• Best colony for simulation environment.

• Mobile temporal mean for real environment.

• Modified reproduction for real environment.

The mobile temporal mean has been adopted as a good compromise between
efficacy and simplicity. Note that even though a similarity with the weighted
resampling step of the MCF might be found when using the mobile temporal
mean as a foreground strategy, a fundamental difference arises. In the MCF,
weights affect the survival of hypotheses (particles), while in the BCGA, weights
are introduced only to perform a comparison among colonies.

The modified reproduction is instead designed to augment the robustness of
the hypotheses survival against measurement faults. The fitness reproduction
chances of a bacterium do not depend only on fitness f1 and density f2, but also
on ancestoral characteristics. The idea is that a bacterium, when reproducing,
transmits its genes to the progeny and determines if they will be more or less
effective in reproduction during following generations. A way to express this
with formulae is:

r = f1i
(1 − f2i+1

) (16)

h =
1

I

i−1
∑

k=1

f1k
(17)

r̂ = r + h − rh (18)

where r is the reproduction probability previously introduced, h is the “genetic
help” (equal to the average fitness of the ancestors over the generations), and
r̂ is the modified reproduction probability. This reproduction schema provides
a better estimation of the hypotheses distribution, allowing for a simple fore-
ground strategy such as the naive best-colony strategy.

3.3 Parameter Optimisation

An open problem for the MCF, the BCGA and related techniques is the pa-
rameter optimisation, such as the choice of the initial number of particles (or
bacteria) or the definition of the variance for reproduction area. An a priori
determination of these parameters is difficult. It can depend on the size of the
deployment area, the ambiguity of both paths and sensors, as well as the kine-
matic model reliability. If the real robot path is available, the algorithm can
be run several times with different parameter configurations and the resulting
tracking errors can be compared through statistical tests. This way, parameters
can be optimised and a satisfying performance can be achieved, lowering the
number of bacteria.

In this study a non-parametric Wilcoxon rank-sum test [20] was adopted to
compare median error vectors on the iteration steps. The Wilcoxon rank-sum
test is a non-parametric statistical analysis of the differences in the distributions
of two groups. This test is the equivalent of the Student’s t-test for normal
distributions, but relaxes the Gaussian requirement and allows for comparison
through median and rank.
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The test can be useful in performance comparisons when two robust indi-
cators are derived from experimental settings. For this study, a performance
indicator vector was generated with the aim of measuring the model behaviour
over time. Specifically, at each time step, the median (or mean) of the pose
error resulting from 50 independent model runs is taken. In this way, a non-
parametric distribution of pose errors over time is achieved. If two models have
to be compared, e.g. the BCGA against the MCF or two BCGA with different
parameter settings, the corresponding performance indicator vectors are calcu-
lated and compared with the rank sum statistics. Thereby, probability values
explaining the model differences are obtained.

3.4 Computational Complexity

To evaluate the ability of an algorithm to run in an on-line context, the com-
putational complexity becomes a very useful analysis. Therefore, a detailed
theoretical study has been performed along with an empirical validation of the
obtained results. The algorithm presents two nested loops in which the dom-
inant operation is the density estimation function, linear with the population
size. At first glance, the complexity turns out to be O(n3) in the worst case,
O(n2) in the best case, and µ · n3 = O(n3) in the mean case, where µ ∈ [0, 1]
is the mean reproduction factor. However, the density function can be dy-
namically calculated with increasing complexity, linear with the first loop, thus
the worst case can be reduced by a factor of two and the mean case becomes

O(n3) = µ·n2·(n+1)
2 . The complexity remains cubic, but with low constants.

Coupled with the fact that in general the BCGA needs a lower number of bac-
teria compared to the number of particles needed for the MCF, its use in an
on-line context is favourable. The next step will be an even lower bounded
implementation.

4 Experiments

The proposed Bacterial Colony Growth Algorithm has been thoroughly inves-
tigated in both a simulated environment and with real robot data. Simulations
were fundamental to tune the algorithm parameters and explore kidnap, while
experiments carried out with the robot showed the capability of the algorithm
to solve the localisation problem in different real-world contexts.

4.1 Problem Settings

Computer Simulations. Simulations have been carried out in a framework
developed under Matlab by the authors. This framework provides different kine-
matic models for the robot, such as the unicycle model, as well as an emulation
for several sensors such as a laser rangefinder. Moreover, the environment is
described by a set M of segments. This framework supports both a complete
simulated context as well a test-bed to run data coming from a real robot. These
two different operative modalities turn out to be very useful, both to test the
correctness and the effectiveness of the algorithm.
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Real Robot Context. Experiments have been carried out on the mobile
platform ATRV-Jr manufactured by iRobot. It is a skid steering vehicle mainly
designed to operate in outdoor environments. The ATRV-Jr has 4 wheels differ-
entially driven by 2 DC motors: the motion is achieved by a differential thrust
on the wheel pairs at the opposite sides. The mobile robot is equipped with 17
sonar rangefinders, a laser scanner (Sick LMS-220), an inertial platform (Cross-
bow DMU-6X), and a GPS receiver (Garmin GPS35-HVS). The sensory system
is connected to the ATRV-Jr’s on board PC (Pentium II, 350 MHz) running
Linux, through serial ports on a Rockeport multiserial port card. The robot is
delivered with a software development environment called MOBILITY, which
provides full access to the software servers available on the mobile platform.
Each server is assigned to control a specific hardware component (sensors and
actuators). In this way all interfaces are reachable from the network exploiting
a CORBA interface.

4.2 Results

4.2.1 Simulations

The simulated environment was configured as a large indoor area with several
ambiguous zones (rooms), with a few poses uniquely defined (Fig. 1). The robot
was simulated moving along a fixed path for 300 steps (step interval at 1s). A
kidnap condition at time t = 100 was added. The simulated laser sensors had
a limit of 8m, while two random zero-mean artificial noise variables were added
to the kinematic model and to the observation model respectively.

20 15 10 5 0 5 10 15 20

10
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4

2

0

2
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8

10

Kidnap Restart

Goal

Colonies

Start

Best 
hypothesis

Figure 1: Simulated environment: multi-hypothesis keeping.

In order to assess the BCGA performances and robustness, a preliminary
phase of parameter tuning was performed. Then, 50 independent test runs were
carried out and a statistical comparison against a Monte Carlo Filter (MCF)
[8] was made.

The final BCGA, after tuning, was configured with an initial random popu-
lation of 300 bacteria, a maximum colony fraction size ν = 0.3, a colony radius
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σr = 10m, a sensor measure deviation of σm = 0.1, a tolerance in pose of
σ2

x = σ2
y = 0.1 and σ2

ϑ = 0.05. The MCF considered the same number of
particles and was independently tuned on different variances.

The strategy for the best hypothesis selection was the same for both algo-
rithms: the best particle for the MCF and the best bacterium in the densest
colony for the BCGA. This is a naive strategy for the hypothesis choice (in
Section 4.2.2 a set of more effective strategies are presented) but it turned out
to be satisfactory in this context.

According to the simulation results, the BCGA algorithm was able to carry
on the multi-hypothesis and successfully localise the robot after a few iterations.
It was also able to quickly re-localise the robot when a kidnap occurred (Fig. 2).
As seen by comparing Fig. 2 with Fig. 3, the median error of the BCGA is al-
most always lower than that of the MCF. Moreover, a non-parametric Wilcoxon
rank sum test [20] showed that the BCGA significantly outperforms the MCF
(ranksum=127386, z val=17.798, p ≃ 0).

4.2.2 Robot in Real Environment

The ATRV-Jr was put in three indoor office environments:

• Corridor.

• Lobby.

• Entire building floor.

The environments were selected with increasing complexity and size. All of
them contained ambiguous areas (including corridors, similar rooms, et cetera)
and places in which both sensors and kinematics fail (glass doors, smooth floors,
et cetera). Laser rangefinders were set to high definition and small range mode
(8m), so that the overall coverage of the environment would not always be
guaranteed.

The Corridor. The robot moved through the corridor, making 180◦ U-turns
at each dead-end (Fig. 4). The sampling frequency was 5Hz and an accurate
Kalman path estimation was available for comparison. The environment fea-
tured highly ambiguous pathways and areas, especially in the middle of the
corridor and in the two almost identical niches at each end. Tracking was fur-
ther complicated due to sliding phenomena impacting encoder data and noise
affecting laser measurements (especially in the U-turn, where glass doors were
also present). The foreground strategy was not limited to the trivial best-
colony (or best-particle) choice. More complex problem settings demanded
more robust hypotheses discrimination. Experimental results suggested that the
simple competitive-logistic model was powerful enough to carry on the multi-
hypothesis. However, a better tracking performance was obtained by exploiting
the modified reproduction schema.
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Figure 2: Simulation environment. BCGA: Median pose error over 50 trials.
Naive best hypothesis choice.

0 50 100 150 200 250 300
0

5

10

15

20

25

Time

D
is

tn
a
ce

 E
rr

o
r

Kidnap

[m
 ]

Figure 3: Simulation environment. Monte Carlo Filter (MCF): Median pose
error over 50 trials. Best particle kept.
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Figure 4: Real environment - Corridor - BCGA.

14



In particular, the following two configurations were taken into account:

1. Mobile temporal mean with the simple-competitive logistic law.

2. Modification of the reproduction law as in eq. (18).

In order to assess robustness and performance, a set of 50 independent runs were
collected both for the first and the second strategies, with different parameter
settings. For the mobile mean strategy, the optimally tuned BCGA was set up
with the following parameters: an initial random population of 200 bacteria (as
it was a smaller area compared to the simulated one); a maximum colony fraction
size ν = 0.5; colony radius σr = 1m; sensor measure deviation of σm = 0.1;
and tolerance in pose of σ2

x = σ2
y = 0.05 and σ2

ϑ = 0.005. Colonies grew
and moved coherently with the robot poses, except in the region corresponding
exactly to the U-turn. Here, the longest lasting colony (and so far, the correct
one) depleted (due to the inability of sensors to properly work in presence of
elements made with glass and the imprecision of the kinematic model), but
recovered rapidly.

Another difficulty occurred in the middle region of the corridor. Due to
the symmetry of the environment, two high-density colonies were growing and
moving in opposite directions. The depletion experienced during the U-turn,
along with the similarity of sensor data readings, due perhaps to the limited
laser range, made the best mobile mean fail occasionally. Fig. 4 shows several
steps of the algorithm’s execution, where the thick (red) triangle represents
the best hypothesis while the (blue) star is the real robot pose. Colonies are
created w.r.t. the locations which better match with the sensor data, e.g. steps
a, b, f . Colonies expanded (enhancing the state-space exploration) when in the
presence of ambiguous areas, data or kinematic failures, e.g. steps g, h. Fig.
5 shows the median tracking error over 50 independent runs. Note that the
mobile mean policy leads to a quick recovery from the U-turn depletion, even
though problems in the middle corridor are experienced.

Experimental results indicate that the modified reproduction schema com-
bined with the naive best-colony strategy performs better. In particular, a lower
localisation error is experienced and a reduced number of bacteria is required in
order to successfully localise the robot (tests were made with 30 and 300 bacte-
ria). Although a better performance is always experienced when the number of
bacteria is increased (no matter what strategy is adopted), the second strategy
outperforms the first even when considering only 30 bacteria. In this context,
the Wilcoxon-test could be properly exploited to find out the optimal number
of bacteria to use w.r.t. a desired error level. Fig. 5 and 6 show the algorithm
performance when considering the mobile mean and the modified reproduction
schema with the best-colony strategy.

The Lobby. This second environment (Fig. 7) presents a wider area when
compared to the corridor previously discussed. Here, the robot started from
the bottom and travelled upward, turning around and returning to the bottom
again. The environment was less ambiguous, but the available map was less
accurate as well, e.g. the slope of the incline on the top wall was incorrect.
Again, 50 experiments were run and a Kalman path estimation was available
for comparison.
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Figure 5: Real environment - Corridor - BCGA: Median pose error over 50
trials. Mobile temporal mean with the simple-competitive logistic law.
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Figure 6: Real environment - Corridor - BCGA: Median pose error over 50
trials. Modified Reproduction Law with Naive best hypothesis choice. Runs
with 300 (solid black line) and 30 (dash red line) bacteria (Color Online)
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The modified reproduction schema presented in eq. (18) was used and the
number of bacteria was varied (30, 100 and 300). The rank-sum statistics again
showed better performances for the 300-bacteria (which explains the lower re-
covery time after measurement failures, Fig. 8 and 9). In addition, the median
error was below 0.5 meters for all settings. In the turning region, although the
algorithm suffered from map inaccuracy, it was robust enough to track the robot
(Fig. 8 and 9). Fig. 7 shows several steps of the algorithm execution. The thick
(red) triangle represents the best hypothesis, while the (blue) star is the real
robot pose. As for the previous experiment, colonies were created w.r.t. the
locations which better matched the sensor data, e.g. steps b, c, d. Moreover,
an expansion of colonies was noticed when in the presence of environmental
ambiguities, e.g. steps a, f .

Entire Building Floor. This is the largest environment where the BCGA
was tested. It is the first floor of the Computer Science Engineering Dept. of
Roma TRE University. It features a smooth, glossy ceramic floor, rough white
walls and several glass doors and windows. The robot started from the bottom-
left small niche and moved towards the first large area with the pillar surrounded
by glass doors. Then, it continued through the left corridor and finally turned
right into the upper horizontal corridor (Fig. 10). The total path was 1000 time
steps, with sampling frequency at 5Hz. Also in this case, a reliable Kalman
path estimation was available to evaluate the algorithm tracking capability.

The BCGA was run 50 times with three different population sizes (300-
150-50). With less than 150 bacteria it was almost impossible to find and
track the robot, while with 300 bacteria the pose error was acceptable. The
modified reproduction strategy turned out to be the only one able to provide
good performance, even though some problems were experienced, in particular,
along the last part of the path (the long corridor). Fig. 11 shows the median
errors w.r.t. a population size of respectively 300 (solid black line) and 150
(dash red line) bacteria.

5 Conclusions

This paper introduces a new, biology-inspired robot localisation approach. The
framework, the Bacterial Colony Growth Algorithm, is composed of two differ-
ent levels of execution: a background level and a foreground level. The first takes
advantage of models of species reproduction to maintain the multi-hypothesis,
while the second selects the best hypotheses according to an exchangeable spe-
cialised strategy, usually problem dependent. Indeed, this modular structure
makes the algorithm very adaptive when considering different scenarios and
objectives.

After a preliminary set-up phase, several experiments were carried out in
both computer simulation and real world contexts. Simulations showed the ef-
fectiveness of the algorithm in carrying on the multi-hypothesis when in the
presence of environmental ambiguities. In addition, when the tracking capabil-
ities of the BCGA and MCF were compared, the BCGA showed better perfor-
mance. This can be explained by considering the advantages of the BCGA over
the MCF:

1) BCGA has a specific framework to maintain the multi-hypothesis.
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Figure 7: Real environment - Lobby - BCGA.
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Figure 8: Real environment - Lobby - BCGA: Median pose error over 50 trials.
Modified Reproduction Schema for best hypothesis choice. Runs with 300 (solid
black line) and 100 (dash red line) bacteria.
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Figure 9: Real environment - Lobby - BCGA: Median pose error over 50 trials.
Modified Reproduction Schema for best hypothesis choice. Runs with 300 (solid
black line) and 30 (dash red line) bacteria.
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Figure 11: Real environment - Entire Building Floor - BCGA: Median pose
error over 50 trials. Modified Reproduction Schema for best hypothesis choice.
Runs with respectively 300 (solid black line) and 100 (dash red line) bacteria.

2) BCGA has a controlled bacteria reproduction with implicit bacterial dis-
tribution recovery.

3) BCGA has a de-coupling between hypothesis building/maintaining (back-
ground strategy) and hypothesis interpretation (foreground strategy).

The first point is a consequence of the competitive equations that form the
foundation of the algorithm. In fact, the logistic model leads to concurrency
and parallel survival of colonies when in the presence of more than one plausible
nutrient area (i.e. possible robot path). This behaviour can be further tuned
through the single-colony size parameter.

The second point is the result of the reproduction strategy. In fact, when
in the presence of good nutrient conditions, bacteria tend to reproduce in a
small region, forming a colony or augmenting the pre-existing colony size. Con-
versely, each bacterium tends to reproduce either nearby or move around if
the area becomes noxious. Note that the possibility to move around is driven
by a Gaussian distribution, whose standard deviation is a function of the nu-
tritional condition of the area where the bacteria is located. This leads to a
self-adaptive phenomenon where areas are more or less broadly explored w.r.t.
the environmental condition. Obviously, if the nutrient condition is near zero,
the Gaussian distribution tends towards the uniform distribution, providing an
automatic re-distribution of the bacteria.

The third point underscores the most important aspect of the algorithm,
which is the two-level structure. Indeed, it provides the advantage of de-coupling
the search-space investigation from the solution interpretation. This is achieved
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by exploiting an ad-hoc exchangeable strategy (used at the foreground level
to select the best solution among colonies), and the logistic equation (used at
the background level to let bacteria reproduce without being affected by the
best-hypothesis choice). This is the most important novelty of the framework
when compared to the MCF. As opposed to the MCF where particle weights
take part in the resampling step, conditioning the survival of the hypotheses,
in the BCGA, the building/evolution of hypotheses is independent from their
interpretation.

Finally, a performance analysis of several real-world scenarios was also car-
ried out. Three different environments with different characteristics and incre-
mental difficulties were exploited. Additional tracking strategies, more suitable
for a real context, were devised and discussed. According to experimental re-
sults, the BGCA was shown to maintain the multi-hypothesis in these scenarios.
Moreover, thanks to the specialised foreground strategies, satisfactory tracking
capabilities were achieved.

Several interesting challenges still remain for future work. First, the model
parameters should be estimated more accurately within a preliminary validation
phase. Second, a better investigation should be performed in order to reduce
the computational complexity of the framework. Finally, the model of species
evolution could be further refined by introducing additional terms, e.g., flexible
death-rates.
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