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Abstract

In this work we propose a distributed algorithm to solve the discrete-time average consensus problem on strongly connected
weighted digraphs (SCWDs). The key idea is to couple the computation of the average with the estimation of the left eigenvector
associated to the zero eigenvalue of the Laplacian matrix according to the protocol described in Qu et al. (2012). The major
contribution is the removal of the requirement of the knowledge of the out-neighborhood of an agent, thus paving the way for
a simple implementation based on a pure broadcast-based communication scheme.

1 Introduction

In the past decades, multi-agent systems have gained an
increasing interest from the control theory community.
Applications range from transportation to environmen-
tal monitoring (see Oh et al. (2007)). Distributed algo-
rithms to estimate the status of the system are essential
in this context, as they can help the agents modify their
behavior in order to improve the global response, Ren
and Beard (2007); Gasparri et al. (2012).

Within several of the works related to this topic, the
communication among agents is modeled using an undi-
rected communication graph (see Mesbahi and Egerst-
edt (2010) and the references therein). This is founded
on the assumptions that the communication is isotropic,
i.e., the employed antenna radiates its power uniformly
in all directions and that its range is the same for all the
agents in the network. Therefore, if an agent can com-
municate with another one, the opposite is possible as
well. However, this assumption is not always realistic in
a real world scenario due, for example, to environmen-

⋆ This work was partially supported by the Italian grant FIRB
“Futuro in Ricerca”, project NECTAR “Networked Collaborative
Team of Autonomous Robots”, code RBFR08QWUV, funded by
the Italian Ministry of Research and Education (MIUR) and by
the Spanish project Ministerio de Economı́a y Competitividad
DPI2009-08126 and DPI2012-32100.

Email addresses: priolo@dia.uniroma3.it
(Attilio Priolo), gasparri@dia.uniroma3.it
(Andrea Gasparri), emonti@unizar.es
(Eduardo Montijano), csagues@unizar.es (Carlos Sagues).

tal effects or the radiation pattern of the agents, Luthy
et al. (2007).

In this work, we consider a more general scenario where
the communication among the agents is modeled as a
directed graph. In particular, two different communica-
tion schemes can be considered, that is point-to-point
or broadcast. We refer to point-to-point as a communi-
cation mechanism where an agent (sender) transmits a
specific message to another agent (receiver), picking out
exactly that agent among all of his neighbors. Note that
this communication scheme requires the sender to know
the neighbors it is going to send themessages to, i.e., each
agent must know its out- neighborhood. Differently, we
refer to broadcast as a communication mechanism were
an agent (sender) can simply transmit a message which
will be received by any other agent (receivers) within its
range of transmission. In our opinion, this latter com-
munication mechanism represents a better choice since
it can be more easily implemented and provides a higher
robustness to the system.

Our contribution is a novel distributed algorithm to com-
pute the average consensus over any strongly connected
weighted digraph, which can be run concurrently with
the estimation procedure described in Qu et al. (2012)
for the computation of the left eigenvector associated
to the zero eigenvalue of the Laplacian matrix and for
which agents are not required to be aware of their out-
neighborhood. To the best of our knowledge, this work
introduces the first approach suitable for an implementa-
tion based on a pure broadcast communication scheme.
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2 Related Works

In this section we review the major contributions avail-
able at the state of the art concerning the average con-
sensus problem on digraphs.

In Dominguez-Garcia and Hadjicostis (2011), a doubly
stochastic weightmatrix is computed by an iterative pro-
cedure that adjusts the outgoing weights of each node.
Notably, the fact that the columns of the weight ma-
trix sums to one at each step, guarantees that the aver-
age consensus can be performed in parallel with respect
to the convergence of the weight matrix to a doubly
stochastic form.

In Cai and Ishii (2012), the average consensus over a
directed network topology is addressed. The proposed
algorithms require an augmentation of the variables of
each agent adding a “surplus” variable to be sent to the
different out-neighbors, thus requiring the knowledge of
the out-neighborhood.

In Atrianfar and Haeri (2012), the average consensus
problem is addressed both in the continuous time and
in the discrete time under the assumption of switching
network topology. However, the discrete time consensus
algorithm requires the adjacency matrix to be doubly
stochastic.

In Hadjicostis and Charalambous (2013), the discrete-
time average consensus problem in the presence of
bounded delays in the communication links and chang-
ing interconnections is addressed. The proposed ratio-
consensus protocol requires that each agent is aware of
the number of its out-neighborhood.

In Dominguez-Garcia and Hadjicostis (2013), the au-
thors present a class of distributed iterative algorithms
to asymptotically scale a primitive column stochastic
matrix to a double stochastic and demonstrate the ap-
plication of these algorithms to the average consensus
problem. In particular, each node is in charge of assign-
ing weights on its outgoing edges based on the weights
on its incoming edges. Thus, the knowledge of the out-
neighborhood is required.

Kempe et al. (2003) propose a gossip-based push-sum
protocol to compute the averagebased on the assignment
of the weights of the out-going neighbors such that their
sum is unitary or, in other terms, the knowledge of each
agent’s out degree is required.

Olshevsky and Tsitsiklis (2009) present two different
strategies to compute the average when the graph is not
balanced. The first one requires the exact knowledge
of the left eigenvector whereas the second one assumes
bidirectional communications, i.e., an undirected graph.
Compared to these algorithms our approach can be run
on any strongly connected digraph without any prior
knowledge of its left eigenvector.

Consensus in time-varying digraphs is analyzed in Hen-
drickx andTsitsiklis (2013) andTouri (2012), giving con-
ditions on the sequence of graphs to ensure convergence
to a weighted average of the initial conditions. However,

in order to reach the exact average, the sequence of ma-
trices needs to be doubly stochastic or balanced.
Eventually, in Chen et al. (2010) an approach to solve
the average consensus on networks with random packet
losses is presented. Differently from our approach, this
work requires the agents to send an additional variable
keeping track of the changes in the state variables caused
by the neighbors influence. However, the assumption on
the links failure probabilities implies the existence of
bidirectional communications.

3 Preliminaries

Let us consider a set of n agents whose communica-
tion network is described by a digraph G(V , E) where
V = {1, · · · , n} is the set of nodes and E ⊆ V × V is the
set of directed edges, i.e., ordered pairs of nodes. Let us
define the weighted adjacency matrix A(G) ∈ R

n×n as
follows: Aij(G) > 0 if (j, i) ∈ E , Aij(G) = 0 otherwise.
Note thatAij(G) > 0 if the agent i can receive data from
the agent j. It is worthy to point out that the previ-
ously defined adjacency matrix is based on the incoming
edges of each node. It is assumed that no self loops exist
in the network, i.e., (i, i) /∈ E . The in-degree and the
out-degree of a node k are given by din(k) =

∑

j Akj(G)
and dout(k) =

∑

j Ajk(G), respectively. The Lapla-

cian matrix is defined as L(G) = D(G) − A(G),
with D(G) the diagonal in-degree matrix defined as

D(G) =
[
din(1), . . . , din(n)

]T
. For the sake of readabil-

ity, the dependency on the graph G will be omitted in
the rest of the paper. Let us recall that the Laplacian
matrix is a non-symmetric weakly diagonal dominant
matrix. It has a zero structural eigenvalue for which the
corresponding right eigenvector is the vector of ones of
appropriate size, i.e., L1 = 0.
Let the following assumptions be satisfied throughout
the rest of the paper:
A1 A unique identifier is associated to each agent i of

the network, e.g., the MAC address.
A2 Each agent sends n variables.
A3 Each agent does not know the number of agents

receiving its information (i.e., its out degree).
A4 The network topology of the consideredmulti-agent

system is described by a static SCWD.
In A1, we assume that each agent can distinguish the
information coming from the other agents according to
the identifier of the sender. In A2, it is assumed that
each agent has enough storage size for the values coming
from its in-neighbors. Therefore, the number of agents
belonging to the network is known by each agent. InA3,
it is stated that each agent can not count the number of
its out-neighbors. Eventually, in A4 we assume that the
information produced by one node is propagated within
the network.

4 Decentralized Estimation of the Left Eigen-
vector

In this section, the distributed procedure for the estima-
tion of left eigenvector associated to the zero structural
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eigenvalue of the Laplacian matrix encoding a SCWD
proposed in Qu et al. (2012) is briefly reviewed.

Let us consider the Perron matrix C defined as:

C = I − β L with 0 < β <
1

Ψ
and Ψ = maxi{

∑

j 6=i Aij}
and let agent i have a variable δi(k) = [δi1(k) . . . δin(k)]

T

with initial values δij(0) = 1 if i = j, 0 otherwise.
At each iteration, the agents update their variables as
follows:

δij(k + 1) =
∑

p∈Ni∪i

Cipδpj(k), (1)

with Ni = {j ∈ V : (j, i) ∈ E} the in-neighborhood
of agent i. Note that, update rule (1) can be put
in vectorial form as: ∆(k + 1) = C∆(k), with

∆(k) = [δ1(k), . . . , δn(k)]
T
. Noting that ∆(0) = I, it is

easy to see that at iteration k, the variable δi(k) contains
exactly the value of the ith row of the matrix Ck.

Let us denote with λCi
and λLi

, the ith eigenvalue of the
Perron Matrix C and of the Laplacian matrix L, respec-
tively, for which holds: λCi

= 1 − β λLi
. It follows that

the two matrices also share the same set of eigenvec-
tors. In particular for the eigenvalue of maximum mod-
ulus of the Perron Matrix C, namely λC1

= 1, to which
it corresponds the zero eigenvalue of the Laplacian Ma-
trix L, namely λL1

= 0 we have that C 1 = λC1
1 and

wT C = λC1
wT , with wT the left eigenvector associated

to λC1
and λL1

.

From the Perron-Frobenius theorem it follows that if the
graph is strongly connected by applying the update rule

given in (1), then limk→∞ ∆(k) =
1 wT

wT1
or, in other

terms, δi(k) will tend to the normalized left eigenvector
w of the Laplacian matrix encoding the digraph.

5 Average Consensus Algorithm

In this section we present a solution to the average con-
sensus problem on a general SCWD by using the left
eigenvector estimation algorithm described in Section
4. For the sake of simplicity and without loss of gen-
erality, let us assume each agent i ∈ V has a scalar
state, namely xi(k) ∈ R, and the elements of the adja-
cency matrix to be unitary. Let us refer to x(k) ∈ R

n

as the state vector x(k) = [x1(k) x2(k) . . . xn(k)]
T and

to x(0) ∈ R
n as the initial conditions of the system

x(0) = [x1(0) x2(0) . . . xn(0)]
T .

Briefly speaking, the average consensus on a digraph is
the problem of computing µ =

∑

i xi(0)/n, where each
agent uses only its locally available information. The
discrete time update law used to solve the consensus
problem is given by the following equation:

xi(k + 1) = xi(k) + β
∑

j∈Ni

(
xj(k)− xi(k)

)
. (2)

Let us remark that, for each agent, the required infor-
mation to compute (2) is obtained by its in-neighbors.
The previous equation can be rearranged in terms

of the product between a matrix and a vector as
x(k + 1) = C x(k).
It is a well established result that with a balanced di-
graph, the classical consensus algorithm leads to an
average consensus, Carli et al. (2008). Unfortunately,
the same statement does not hold for the general case
of digraphs, where the consensus value is given by
µ̄ =

∑

i wixi(0) 6= µ, being wi the ith coefficient of the
left eigenvector w = 1 associated to the eigenvalue λC1

introduced before.

In order to reach the average in the case of a general
SCWD, the actual initial conditions x(0) can be oppor-
tunely modified as x̃(0) = x(0) + Γ so that:

µ =
1

n

n∑

i=1

xi(0) =

n∑

i=1

wi

(
xi(0) + Γi

)
, (3)

with Γ = [Γ1 . . . Γn]
T the extra term that needs to be

adjusted. In particular, each component of the initial

conditions is required to satisfy
xi(0)

n
= wi

(
xi(0)+Γi

)
,

which leads to

Γi = xi(0)

(
1

nwi
− 1

)

= xi(0)

(
1− nwi

nwi

)

. (4)

Let us now assume the left eigenvector to be available
at time k = 0. This implies that the vector Γ can also
be computed. Therefore, the average consensus over a
digraph can be achieved by following two different ap-
proaches:

(1) fixing the initial conditions x(0) before starting the
algorithm,

(2) injecting a suitable exogenous input at any given
step k.

In the sequel, an algorithm based on the second strat-
egy is described. To this end, let us first introduce the
following proposition.

Proposition 1 The correction term Γ can be equiva-
lently injected at any iteration k, that is

〈x(0) + Γ, w〉 = 〈x(k) + Γ, w〉 ,

where 〈·, ·〉 denotes the inner product in R
n.

Proof: To prove the proposition let us recall the well-
known property of the left eigenvector for discrete time
systems 〈x(k), w〉 = λk

C1
〈x(0), w〉 . Thus, by linearity

of the inner product and being λC1
= 1, it follows that:

〈x(0) + Γ, w〉 = 〈x(0), w〉+ 〈Γ, w〉
= 〈x(k), w〉 + 〈Γ, w〉
= 〈x(k) + Γ, w〉 .

�

By assuming the estimate of the eigenvector w to be
asymptotic, it follows that a possible technique to
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asymptotically achieve the consensus is to modify the
update rule given in eq. (2) as follows:

xi(k + 1) = xi(k) + ǫi(k)

+ β
∑

j∈Ni

(

xj(k) + ǫj(k)− xi(k)− ǫi(k)
)

(5)
where the iterative error ǫi(k) is defined as:

ǫi(k) = Γ̃i(k)− Γ̃i(k − 1) (6)

with:

Γ̃i(k) = xi(0)

(
1

n δii(k)
− 1

)

(7)

and Γ̃i(−1) = 0. Clearly, from an implementation
standpoint, each agent i broadcasts the quantity
x̂i(k) = xi(k) + ǫi(k) at each time step k.
The modified consensus algorithm can be expressed in
vector form as:

x(k + 1) = C
(

x(k) + ǫ(k)
)

(8)

with ǫ(k) = [ǫ1(k) . . . ǫn(k)]
T the error vector at time k.

Algorithm 1 shows the pseudo-code of the kth iteration
of the average consensus algorithm run by the ith agent.

Algorithm 1 Average Consensus Algorithm

Require: β, xi(k), δi(k), {xj(k)}, {δj(k)} j ∈ Ni

Ensure: xi(k + 1)

/* Update left eigenvector estimate */

1: δi(k)← δi(k − 1) +
∑

j∈N
β(δj(k − 1)− δi(k − 1))

/* Compute exogenous input */

2: ǫi(k)←
xi(0)

n

(

δii(k − 1)− δii(k)

δii(k − 1)δii(k)

)

/* Update consensus estimate */

3: xi(k + 1)← xi(k) + ǫi(k)+

+ β
∑

j∈Ni

(

xj(k) + ǫj(k)− xi(k)− ǫi(k)
)

Proposition 2 Let us assume the multi-agent system
applies the modified consensus algorithm given in eq. (8).
Then it follows that:

lim
k→∞

〈x(k), w〉 = 〈x(0), w〉 + 〈Γ, w〉 (9)

Proof: Let us consider the update at time k

〈
x(k + 1), w

〉
=

〈
x(k) + ǫ(k), w

〉

=
〈
x(k), w

〉
+
〈
ǫ(k), w

〉

=
〈
x(k − 1) + ǫ(k − 1), w

〉
+

〈
ǫ(k), w

〉

=
〈
x(0), w

〉
+
〈

k∑

i=0

ǫ(i), w
〉

At this point, by noticing that the term
∑k

i=0 ǫ(i) = Γ̃(k)
is a telescoping series it follows that:

〈x(k + 1), w〉 = 〈x(0), w〉+
〈
Γ̃(k), w

〉

Furthermore by adding and subtracting the quantity
〈Γ, w〉 to the right-hand side, it follows:

〈x(k + 1), w〉 = 〈x(0), w〉+ 〈Γ, w〉+ 〈ζ(k), w〉

where ζ(k) = [ζ1(k), . . . , ζn(k)]
T with ζi(k) = Γ̃i(k)− Γi.

Successively, due to the convergence properties of the
left eigenvector estimation algorithm we have:

lim
k→∞

ζi(k) = 0, ∀ i ∈ V , (10)

from which it follows:

lim
k→∞

〈x(k), w〉 = 〈x(0), w〉+ 〈Γ, w〉 ,

thus proving the statement. �

The following proposition provides a bound on the dis-
agreement vector ϕ(k) defined as ϕ(k) = x(k)− µ1.

Proposition 3 Let us assume the multi-agent system
applies the modified consensus algorithm give in eq. (8).
Then, the disagreement vector ϕ(k) can be bounded as:

‖ϕ(k)‖ ≤ χ1 k|λC2
|k + χ2|λC2

|k, (11)

with ‖·‖ the Euclidean norm and χ1, χ2 ∈ R two positive
constant values.

Proof: From eq. (8) at the kth iteration we have

x(k) = Ckx(0) +
∑k−1

j=0 Ck−jǫ(j). From eqs. (3), (6)

and (7) the average can be put in the form

µ = wTx(0) +
∞∑

j=0

wT ǫ(j).

The norm of the disagreement vector can be written as:

‖ϕ(k)‖ ≤
∥
∥
∥
∥
Ckx(0)−wTx(0)1

∥
∥
∥
∥

︸ ︷︷ ︸

t1

+

+

∥
∥
∥
∥

k−1∑

j=0

Ck−jǫ(j)−
∞∑

j=0

wT ǫ(j)1

∥
∥
∥
∥

︸ ︷︷ ︸

t2

.

As in Montijano et al. (2013), let Q = C − 1wT , whose
eigenvalues are λQ1

= 0, with w and wTx(0)1 its corre-
sponding left and right eigenvectors respectively, while
the rest of eigenvalues and eigenvectors are the same as
for C. At this point, since Ck

(
wTx(0)

)
1 =

(
wTx(0)

)
1
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and 1wT (x(0) − wTx(0)1) = 0, we can see that
Ck(x(0) − wTx(0)1) = Qk(x(0) − wTx(0)1), for all
k ∈ N, and therefore:

t1 = ‖Qkx(0)−wTx(0)1‖ ≤ ‖Q‖k‖x(0)−wTx(0)1‖
≤ γ1

∣
∣λC2

∣
∣
k∥
∥x(0)−wTx(0)1

∥
∥ ≤ χ21

∣
∣λC2

∣
∣
k
,

(12)
where χ21 = γ1

∥
∥x(0) − wTx(0)1

∥
∥ is a constant value

with γ1 another constant due to the diagonalization of C.
The following holds for the second term t2:

t2 =

∥
∥
∥
∥

k−1∑

j=0

(
Ck−jǫ(j)−wT ǫ(j)1

)
−

∞∑

j=k

wT ǫ(j)1

∥
∥
∥
∥

≤
∥
∥
∥
∥

k−1∑

j=0

(

Ck−jǫ(j)−wT ǫ(j)1
)
∥
∥
∥
∥

︸ ︷︷ ︸

t21

+

∥
∥
∥
∥

∞∑

j=k

wT ǫ(j)1

∥
∥
∥
∥

︸ ︷︷ ︸

t22

.

Regarding the term t21 we have that:

t21 ≤
k−1∑

j=0

∥
∥
∥Ck−jǫ(j)−wT ǫ(j)1

∥
∥
∥

≤
k−1∑

j=0

∥
∥
∥C

∥
∥
∥

k−j∥
∥
∥ǫ(j)−wT ǫ(j)1

∥
∥
∥

≤
k−1∑

j=0

γ1|λC2
|k−j

∥
∥
∥ǫ(j)−wT ǫ(j)1

∥
∥
∥

︸ ︷︷ ︸

t211

,

where:

t211 ≤ √
n
∥
∥
∥ǫ(j)−wT ǫ(j)1

∥
∥
∥
∞

≤ √
nmax

i

∣
∣xi(0)− wixi(0)

∣
∣max

i

∣
∣
∣
∣

δii(j − 1)− δii(j)

n δii(j) δii(j)

∣
∣
∣
∣

≤ √
n
∥
∥
∥x(0)−wTx(0)1

∥
∥
∥max

i

∣
∣
∣
∣

δii(j − 1)− δii(j)

n δii(j) δii(j)

∣
∣
∣
∣

︸ ︷︷ ︸

t2111

.

Since δii(j)1 = Cjei with ei the i-th vector of the canon-
ical basis, thus the following holds for the term t2111:

t2111 = max
i

∣
∣δii(j − 1)− wi + wi − δii(j)

∣
∣

∣
∣n δii(j − 1) δii(j)

∣
∣

≤ max
i

∥
∥Cjei − wi 1

∥
∥+ ‖Cj−1ei − wi 1

∥
∥

n d̄2

≤ max
i

γ1
(
|λC2

|j + |λC2
|j−1

) ∥
∥ei − wi 1

∥
∥

n d̄2

≤
γ1|λC2

|j
(

1 +
1

|λC2
|

)√
2

n d̄2
,

where the fact
∥
∥ei − wi 1

∥
∥ ≤

√
2 has been used and

d̄ = mini∈V minj∈N δii(j) > 0.

Therefore, the term t211 is bounded by:

t211 ≤ χ11|λC2
|j , (13)

with a constant χ11 defined as:

χ11 =

γ1

(

1 +
1

|λC2
|

)√
2

n d̄2

∥
∥
∥x(0)−wTx(0)1

∥
∥
∥, (14)

Therefore:

t21 ≤
k−1∑

j=0

γ1χ11|λC2
|k ≤ γ1χ11k|λC2

|k, (15)

and noting that χ1 = γ1χ11 is also constant the first
term of the right hand side of (11) is found.

Regarding the term t22, following the same reasoning as
in eq. (13), we have that:

∥
∥
∥t22

∥
∥
∥ ≤

∥
∥
∥

∞∑

j=k

wT ǫ(j)1
∥
∥
∥

≤ √
nmax

i

∣
∣
∣ lim
j→∞

wiΓ̃i(j)− wiΓ̃i(k − 1)
∣
∣
∣

≤ max
i

√
nxi(0)

n

∣
∣
∣
δii(k − 1)− wi

δii(k − 1)

∣
∣
∣

≤ max
i

√
nxi(0)

d̄ n

∥
∥Ck−1ei − wi1

∥
∥

≤ γ1‖x(0)‖
√
2

d̄
√
n|λC2

| |λC2
|k ≤ χ22|λC2

|k,

(16)

with χ22 another constant. At this point, by collection
all the terms given in eqs (12), (15) and (16) the bound
given in eq. (11) is obtained with χ2 = χ21 + χ22. �

It is now possible characterize the convergence rate of
the proposed algorithm as follows.

Corollary 4 The convergence rate of the algorithm is:

rasym = sup
x(0) 6=µ

lim
k→∞

(‖ϕ(k)‖
‖ϕ(0)‖

)1/k

= |λC2
| (17)

Proof: The proof follows directly from the application
of the result given in Proposition 3.

Notably, in our framework the modified consensus algo-
rithm runs concurrently with the left eigenvector estima-
tion protocol and since the two algorithms exhibit the
same convergence rate, it follows that no real overhead
is introduced in terms of number of exchanged packets
at the cost of a slightly larger payload.
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Fig. 1. Simulation involving a multi-agent system composed of 6 agents. Fig. 1-(a) depicts the underlying communication
graph describing the interaction among the six agents. Fig. 1-(b) shows the left eigenvector estimation carried out by agent 1.
Fig. 1-(c) shows the standard consensus protocol, where the dotted line represents the average value. Fig. 1-(d) shows the
proposed modified consensus protocol.

6 Simulations

In this section, a simulation involving a network of 6
agents is considered. The agents run both the classical
discrete time consensus and the modified one proposed
in this work along with the left eigenvector estimation.
Fig. 1(a) depicts the agents network topology. The initial
conditions of the agents are x(0) = [64 79 4 32 9 60]T ,
leading to µ = 41.3333. Fig. 1(b) depicts the estima-
tion process of the left eigenvector associated to the zero
eigenvalue of the Laplacian matrix for Agent 1. Fig. 1(c)
depicts the execution of the standard consensus algo-
rithm. It is worthy to notice that in this case the agents
can achieve a consensus because the graph is a SCD, but
the consensus value is different from µ. Instead, in Fig.
1(d) the execution of the consensus using the modified
algorithm is given. In this case, all the agents obtain µ
as their consensus value.

7 Conclusion

In this work we proposed a distributed algorithm
for the average consensus on any strongly connected
weighted digraph without the knowledge of the agents
out-neighborhood. The key idea is to couple the com-
putation of the average with the estimation of the left
eigenvector associated to the zero eigenvalue of the
Laplacian matrix according to the estimation proce-
dure described in Qu et al. (2012). Future work will be
focused on the extension of the proposed approach to
work on general time-varying digraphs.

References
Z. Qu, C. Li, and F. Lewis. Cooperative control with dis-

tributed gain adaptation and connectivity estimation for
directed networks. International Journal of Robust and
Nonlinear Control, 2012.

S. Oh, L. Schenato, P. Chen, and S. Sastry. Tracking and co-
ordination of multiple agents using sensor networks: Sys-
tem design, algorithms and experiments. Proceedings of
the IEEE, 95(1):234 –254, 2007.

W. Ren and R. W. Beard. Distributed Consensus in Multi-
vehicle Cooperative Control: Theory and Applications.
Springer Verlag, 2007.

A. Gasparri, F. Fiorini, M. Di Rocco, and S. Panzieri.
A networked transferable belief model approach for dis-
tributed data aggregation. IEEE Transactions on Sys-
tems, Man, and Cybernetics, Part B: Cybernetics,, 42(2):
391–405, 2012.

M. Mesbahi and M. Egerstedt. Graph Theoretic Methods in
Multiagent Networks. Princeton Series in Applied Math-
ematics. Princeton University Press, 2010.

K.A. Luthy, E. Grant, and T.C. Henderson. Leveraging rssi
for robotic repair of disconnected wireless sensor networks.
In IEEE Int. Conference on Robotics and Automation,
pages 3659 –3664, 2007.

A. D. Dominguez-Garcia and C. N. Hadjicostis. Distributed
strategies for average consensus in directed graphs. IEEE
Conference on Decision and Control and European Control
Conference, pages 2124–2129, 2011.

K. Cai and H. Ishii. Average consensus on general strongly
connected digraphs. Automatica, 48(11):2750 – 2761,
2012.

H. Atrianfar and M. Haeri. Average consensus in networks
of dynamic multi-agents with switching topology: Infinite
matrix products. ISA Transactions, 51(4):522 – 530, 2012.

C. Hadjicostis and T. Charalambous. Average consensus in
the presence of delays in directed graph topologies. IEEE
Transactions on Automatic Control, 2013. ISSN 0018-
9286. doi: 10.1109/TAC.2013.2275669. Early Access.

A.D. Dominguez-Garcia and C. N. Hadjicostis. Distributed
matrix scaling and application to average consensus in di-
rected graphs. IEEE Transactions on Automatic Control,
58(3):667–681, 2013.

D. Kempe, A. Dobra, and J. Gehrke. Gossip-based compu-
tation of aggregate information. In Symposium on Foun-
dations of Computer Science, pages 482–491, 2003.

A. Olshevsky and J.N. Tsitsiklis. Convergence speed in dis-
tributed consensus and averaging. Journal on Control and
Optimization, 48(1):33–55, 2009.

J.M. Hendrickx and J.N. Tsitsiklis. Convergence of type-
symmetric and cut-balanced consensus seeking systems.
IEEE Transactions on Automatic Control, 58(1):214–218,
2013.

B. Touri. Product of random stochastic matrices and dis-
tributed averaging. Springer, 2012.

Y. Chen, R. Tron, A. Terzis, and R. Vidal. Corrective con-
sensus: Converging to the exact average. In IEEE Con-
ference on Decision and Control, pages 1221–1228, 2010.

R. Carli, F. Fagnani, A. Speranzon, and S. Zampieri. Com-
munication constraints in the average consensus problem.
Automatica, 44(3):671 – 684, 2008.

E. Montijano, J.I. Montijano, and C. Sagues. Chebyshev
polynomials in distributed consensus applications. IEEE
Transactions on Signal Processing, 61(3):693–706, 2013.

6


