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Abstract

This technical communique represents a generalization of the convergence analysis for the consensus algorithm proposed
in Priolo et al. (2014). Although the consensus was reached for any strongly connected weighted digraphs (SCWD), the
convergence analysis provided in Priolo et al. (2014) was only valid for diagonalizable matrices encoding a SCWD. The result
we present here generalizes the previous one to all possible matrices encoding a SCWD that can be used in the algorithm.

1 Introduction

The problem of distributed average consensus over
strongly connected weighted digraphs has received a lot
of attention over the past few years. While this prob-
lem is well known to be solved for undirected graphs
(see Mesbahi and Egerstedt (2010) and references
therein), solutions are largely unknown for the remain-
ing cases when graphs are not balanced. This implies
that, even when a standard linear iteration will reach
consensus, the final value will be some weighted combi-
nation of the initial conditions, different to the average.
Although reaching a consensus to a certain value might
suffice in several application scenarios, such as in context
of multi-robot systems, e.g., consensus-based formation
control or rendez-vous, reaching the average of the ini-
tial conditions is mandatory in some specific scenarios,
such as in the context of maximum likelihood estima-
tion in Xiao et al. (2005), or clock synchronization,
e.g., Carli et al. (2011); He et al. (2013, 2014). Thus,
the design of a distributed algorithm for reaching the
average consensus over SCWD is certainly of interest.
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Some approaches dealing with this problem present dis-
tributed algorithms that generate a weight-balanced ma-
trix, Dominguez-Garcia and Hadjicostis (2011); Ghare-
sifard and Cortés (2012). Once this matrix is available, a
standard linear iteration reaches the average of the ini-
tial conditions in the same way as for undirected graphs.

Other methods are based on the introduction of cor-
rection terms, e.g., Priolo et al. (2014); Cai and Ishii
(2012), that compensate for the errors that the linear
iteration introduces in the computation of the consen-
sus. The main contribution of the algorithm in Priolo
et al. (2014) was lifting the requirement of the out-
neighborhood knowledge for the different agents, mak-
ing the approach suitable for an implementation based
on a pure broadcast communication scheme.

In Priolo et al. (2014), the convergence of the algorithm
was proved by following the approach used in Monti-
jano et al. (2013) for which the weight matrix must be
diagonalizable. In this technical communique we extend
the convergence analysis to the general case of any row
stochastic matrix encoding a SCWD.

2 Algorithm Overview

Consider a set of n agents with some initial values
x(0) = [x1(0) x2(0) . . . xn(0)]T ∈ Rn, with average
equal to µ, and interactions between them defined ac-
cording to a SCWD, encoded by the matrix C. This
matrix is defined to be row stochastic (all its rows sum
1), which implies that has one eigenvalue λ1 = 1 with
multiplicity equal to one, and right and left eigenvec-
tors equal to 1 and w respectively, i.e., C1 = 1 and
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wTC = wT . The modulus of the remaining eigenvalues
of C is strictly less than one, |λi| < 1, for all i 6= 1.

The distributed algorithm to reach average consensus
over a SCWD is

x(k + 1) = C
(
x(k) + ε(k)

)
, (1)

with x(k) = [x1(k) x2(k) . . . xn(k)]T the current esti-
mations of the agents and ε(k) ∈ Rn the iterative cor-
rection term to reach the average. The individual com-
ponents of this last vector are

εi(k) = Γ̃i(k)− Γ̃i(k − 1), (2)

with

Γ̃i(k) = xi(0)

(
1

n δii(k)
− 1

)
. (3)

The terms δii(k) represent the estimation of the i-th
component of the left eigenvector, w, associated to
λ1. The computation of these elements follows the ap-
proach in Qu et al. (2012). Each agent handles a vector
δi(k) = [δi1(k) . . . δin(k)]T with initial values δij(0) = 1
if i = j, and 0 otherwise. The successive values of the vec-
tor are computed as δij(k + 1) =

∑
p∈Ni∪{i} Cipδpj(k).

Defining ∆(k) = [δ1(k), . . . , δn(k)]
T

, the previous up-
date can be put in vectorial form using another linear
iteration on the matrix C, ∆(k + 1) = C∆(k).

Denote
ϕ(k) = x(k)− µ1, (4)

the disagreement vector of the current estimation
with respect to the average of the initial conditions,
µ = x(0)T1/N . Assuming the weight matrix is diago-
nalizable, the norm of this vector is bounded by

‖ϕ(k)‖ ≤ χ1 k|λ2|k + χ2|λ2|k, (5)

with χ1, χ2 ∈ R two positive constant values and λ2 the
second largest eigenvalue of C, see Proposition 3 in Priolo
et al. (2014). In the following, we generalize the result
to any row stochastic matrix encoding a SCWD.

3 Convergence Analysis

Let us suppose that the matrix C has M ≤ N dis-
tinct eigenvalues, denoted by λi, i = 1, . . . ,M . Without
loss of generality, let w be chosen in such a way that
wT1 = 1. The rest of eigenvalues, sorted in modulus,
satisfy that |λi| < 1, i = 2, . . . , N. For each eigenvalue
λi, we denote by ai and gi its algebraic and geometric
multiplicity and we define di = ai − gi ≥ 0 as their dif-
ference. Additionally, we let

dmax = max
i
di. (6)

The main result of this technical communique is the fol-
lowing

Proposition 1 Let us assume the multi-agent system
applies the consensus algorithm give in eq. (1). Then, the
disagreement vector ϕ(k) in eq. (4) can be bounded as

‖ϕ(k)‖ < χ1 k
2dmax+1|λ2|k−2dmax + χ2k

dmax
∣∣λ2∣∣k−dmax

,
(7)

with ‖ · ‖ the Euclidean norm, dmax defined in (6) and
χ1, χ2 ∈ R two positive constant values.
The rest of the section is devoted to the demonstration
of Proposition 1. We begin by introducing several lem-
mas that provide intermediate bounds. First of all, we
provide a bound for the disagreement vector of a linear
iteration with respect to the weighted average of the ini-
tial conditions given by the left eigenvector.
Lemma 3.1 Given a vector x ∈ Rn, for all k ∈ N, it
holds that

‖Ckx−wTx1‖ ≤ χkdmax |λ2|k−dmax , (8)

with χ a constant scalar.
Proof: LetQ = C−1wT , whose eigenvalues are λ1 = 0,
with w and 1 its corresponding left and right eigenvec-
tors respectively, while the rest of eigenvalues and eigen-
vectors are the same as for C. Using the following prop-
erties

Ck
(
wTx

)
1 =

(
wTx

)
1,

1wT (x−wTx1) = 0,

we can see that

Ck(x−wTx1) = Qk(x−wTx1), (9)

for all k ∈ N, and therefore

‖Ckx−wTx1‖ = ‖Qk
(
x−wTx1

)
‖

≤ ‖Qk‖‖x−wTx1‖.
(10)

In order to bound ‖Qk‖, we use the Jordan decomposi-
tion

Q = PJP−1, (11)

with J the Jordan matrix, Gantmacher (1990). This
matrix is block-diagonal, containing M different blocks,
denoted by Ji, i = 1, . . . ,M . Each of this blocks can be
expressed by the sum

Ji = λiIai +Ri, (12)

with Iai the identity matrix of dimension ai and Ri a
matrix with all zeros and, if di > 0, some ones in the
elements of the upper-diagonal above the main diagonal.
The powers of Q are equal to Qk = PJ kP−1. Since J
is block diagonal, we analyze the powers of a particular
block. Using (12) and the fact thatRdi = 0 for all d > di,
the powers of Ji can be expressed as a sum with the
Newton binomial

J ki =

k∑
d=0

(
k

d

)
λk−di Rdi =

di∑
d=0

(
k

d

)
λk−di Rdi . (13)
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Bounding all the binomial numbers by kdi , and noting
that ‖Rdi ‖ ≤ 1 for all d ≤ di we have

‖J ki ‖ < (di + 1)kdi |λi|k−di . (14)

Recalling that dmax = maxi di and bounding the powers
of the eigenvalues by the power of the largest eigenvalue
among them, |λ2|k−di < 1, it follows

‖J k‖ < (dmax + 1)kdmax |λ2|k−dmax . (15)

Replacing in (11)

‖Qk‖ = ‖PJ kP−1‖ ≤ ‖P‖‖J k‖‖P−1‖
< γ1(dmax + 1)kdmax |λ2|k−dmax ,

(16)

with γ1 = ‖P‖‖P−1‖ a constant. Thus, denoting

χ = γ1(dmax + 1)‖x−wTx1‖, (17)

the bound in (8) follows. �

Next, we discuss the particular case of the disagreement
vector at iteration k caused by the linear iteration of the
correction term at iteration j < k.

Lemma 3.2 For all k ∈ N, and 0 ≤ j < k it holds that

∥∥∥Ck−jε(j)−wT ε(j)1
∥∥∥ < χ1

(
(k − j)j

)dmax |λ2|k−2dmax ,

(18)
with χ1 a constant scalar.

Proof: Using Lemma 3.1,

∥∥∥Ck−jε(j)−wT ε(j)1
∥∥∥ < χ(k − j)dmax |λ2|k−j−dmax ,

with

χ = γ1(dmax + 1)‖ε(j)−wT ε(j)1‖. (19)

In order to bound the norm of ε(j)−wT ε(j)1,we analyze
its infinity norm

‖ε(j)−wT ε(j)1‖ ≤
√
n
∥∥∥ε(j)−wT ε(j)1

∥∥∥
∞
. (20)

Combining eqs. (2) and (3) we have

εi(j) =
xi(0)

n

(
δii(j − 1)− δii(j)
δii(j) δii(j − 1)

)
. (21)

Therefore, recalling that wT1 = 1, we obtain∥∥∥ε(j)−wT ε(j)1
∥∥∥
∞

=
1

n
max
i

∣∣∣∣xi(0)
δii(j − 1)− δii(j)

δii(j) δii(j)

−
∑
`

w`x`(0)
δ``(j − 1)− δ``(j)

δ``(j) δ``(j)

∣∣∣∣∣
=

1

n
max
i

∣∣∣∣xi(0)
δii(j − 1)− δii(j)

δii(j) δii(j)

∣∣∣∣
+
∑
`

w` max
i

∣∣∣∣xi(0)
δii(j − 1)− δii(j)

δii(j) δii(j)

∣∣∣∣
<

2 maxi |xi(0)|
n

max
i

∣∣∣∣δii(j − 1)− δii(j)
δii(j) δii(j)

∣∣∣∣︸ ︷︷ ︸
α1

.

(22)

The next step is to find a bound for α1. Since
δii(j)1 = Cjei with ei the i-th vector of the canonical
basis (see Priolo et al. (2014)), it follows

α1 = max
i

∣∣δii(j − 1)− wi + wi − δii(j)
∣∣∣∣δii(j − 1) δii(j)

∣∣
< max

i

∥∥Cjei − wi 1∥∥+ ‖Cj−1ei − wi 1
∥∥

δ̄2
,

(23)

where δ̄ = mini∈V minj∈N δii(j) > 0.

Using again Lemma 3.1 and the fact that
∥∥ei−wi 1∥∥ ≤ √2

we obtain

‖Cjei − wi 1
∥∥ < γ1(dmax + 1)

√
2jdmax |λ2|j−dmax . (24)

Thus we have

α1 <
2γ1(dmax + 1)

√
2

|λ2|δ̄2
jdmax |λ2|j−dmax . (25)

Finally, combining (19), (20), (22), and (25), the bound
in (18) is found with

χ1 =
4
√

2nγ21(dmax + 1)2 maxi |xi(0)|
n|λ2|δ̄2

. (26)

�
The next lemma bounds the sum of the correction terms
that are still required to be introduced at iteration k to
guarantee convergence to the average.

Lemma 3.3 For all k ∈ N, it holds that

∥∥∥ ∞∑
j=k

wT ε(j)1
∥∥∥ < χ2k

dmax |λ2|k−dmax , (27)

with χ2 a constant scalar.
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Proof: Following a similar reasoning as in the previous
Lemmas, and using eq. (2)-(3) we obtain

∥∥∥ ∞∑
j=k

wT ε(j)1
∥∥∥ ≤ √n∥∥∥ ∞∑

j=k

wT ε(j)1
∥∥∥
∞

=
√
n

∣∣∣∣∣∣
∞∑
j=k

∑
i

wiεi(j)

∣∣∣∣∣∣ =
√
n

∣∣∣∣∣∣
∑
i

wi

∞∑
j=k

εi(j)

∣∣∣∣∣∣
=
√
n

∣∣∣∣∣∑
i

wi lim
j→∞

Γ̃i(j)− Γ̃i(k − 1)

∣∣∣∣∣
≤
√
n

n
max
i
|xi(0)|

∣∣∣ δii(k − 1)− wi
δii(k − 1)

∣∣∣
<

√
n

nδ̄
max
i
|xi(0)|

∥∥Ck−1ei − wi1∥∥
<

√
2nγ1(dmax + 1) maxi |xi(0)|

n|λ2|δ̄
kdmax |λ2|k−dmax .

Therefore, (27) holds with

χ2 =

√
2nγ1(dmax + 1) maxi |xi(0)|

n|λ2|δ̄
. (28)

�

Finally, we provide the proof of Proposition 1:

Proof of Proposition 1: The average of the initial con-
ditions can be expressed by

µ = wTx(0) +

∞∑
k=0

wT ε(k). (29)

Therefore, using (1), the norm of the disagreement vec-
tor can be bounded as

‖ϕ(k)‖ ≤
∥∥∥∥Ckx(0)−wTx(0)1

∥∥∥∥
+

∥∥∥∥ k−1∑
j=0

Ck−jε(j)−
∞∑
j=0

wT ε(j)1

∥∥∥∥
≤
∥∥∥∥Ckx(0)−wTx(0)1

∥∥∥∥
+

∥∥∥∥ k−1∑
j=0

(
Ck−jε(j)−wT ε(j)1

)∥∥∥∥
+

∥∥∥∥ ∞∑
j=k

wT ε(j)1

∥∥∥∥.

(30)

The first term of the right hand side of the inequality is
bounded by Lemma 3.1 and the last term is bounded by
Lemma 3.3. These two bounds together yield the second
term of the right hand side of (7).

The other term of the bound in (7) is found using
Lemma 3.2 on the remaining sum as∥∥∥∥ k−1∑

j=0

(
Ck−jε(j)−wT ε(j)1

)∥∥∥∥
≤
k−1∑
j=0

∥∥∥∥(Ck−jε(j)−wT ε(j)1
)∥∥∥∥

< χ1

k−1∑
j=0

((k − j)j)dmax |λ2|k−2dmax

< χ1k
2dmax+1|λ2|k−2dmax .

(31)

�
We point out that the bounds found in Lemmas 3.1
and 3.3 are tight. Unfortunately, the same does not hold
for Lemma 3.2. This can be explained by the fact that in
proving this bound we considered the norm of ‖Qk−j‖
and ‖Qj‖ separately, which results in a looseness of the
bound itself. Nevertheless, we reiterate that this shows
the convergence of the algorithm for any row stochastic
matrix encoding a SCWD.

To conclude, the following remark establishes a relation-
ship with the analysis carried out in Priolo et al. (2014).

Remark 3.1 If the matrix C is diagonalizable, then
dmax = 0, and the bound in eq. (7) reduces to (up to a
constant) that in Proposition 3 in Priolo et al. (2014).

4 Conclusion

This technical communique represents a generalization
of the theoretical analysis for the consensus algorithm
proposed in Priolo et al. (2014). Specifically, we have
provided a convergence analysis of the algorithm for any
SCWD not restricted to diagonalizable matrices.
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