
ClockSynchronizationProtocol forWireless Sensor

NetworkswithBoundedCommunicationDelays

Emanuele Garone a, Andrea Gasparri b, Francesco Lamonaca c

aFaculty of Applied Science, Control and Systems Analysis Department, Université Libre de Bruxelles, 1050 Brussels, Belgium

bDepartment of Engineering, Roma Tre University, Via della Vasca Navale 79, 00146 Rome, Italy

cDept. of Computer Science, Modeling, Electronic and Systems, University of Calabria, Ponte P. Bucci, 87040, Arcavacata di
Rende, Italy

Abstract

In this paper, we address the clock synchronization problem for wireless sensor networks. In particular, we consider a wireless
sensor network where nodes are equipped with a local clock and communicate in order to achieve a common sense of time. The
proposed approach consists of two asynchronous consensus algorithms, the first of which synchronizes the clocks frequency
and the second of which synchronizes the clocks offset. This work advances the state of the art by providing robustness
against bounded communication delays. A theoretical characterization of the algorithm properties is provided. Simulations and
experimental results are presented to corroborate the theoretical findings and show the effectiveness of the proposed algorithm.

Key words: Asynchronous Consensus Algorithm, Clock Synchronization, Noise Robustness, Delay Measurements, Wireless
Sensor Networks

1 Introduction

A Wireless Sensor Network (WSN) consists of a collec-
tion of nodes deployed within an environment to per-
form a given task. Each node is typically equipped with
a radio transceiver, a micro-controller and a set of sen-
sors. Nodes collaborate in order to reach a common goal.
WSNs are at the forefront of emerging technologies due
to the recent advances in Microelectromechanical Sys-
tems (MEMSs). The inherent multidisciplinary nature
of WSNs has attracted scientists coming from different
research areas from networking to robotics. Their appli-
cation ranges from surveillance and coverage [1,2], struc-
tural health monitoring [3,4], and industrial process con-
trol [5,6] to emergency response [7,8] and mobile target

? This work was partially supported by the Italian
grant FIRB “Futuro in Ricerca”, project NECTAR, code
RBFR08QWUV, funded by the Italian Ministry of Re-
search and Education (MIUR) and by the Italian Ministry
of Economic Development by means of the RIDITT: “Italian
Network for Innovation and Technology Transfer to Enter-
prises”, under the project “DI.TR.IM.MIS”.

Email addresses: egarone@ulb.ac.be (Emanuele
Garone), gasparri@dia.uniroma3.it (Andrea Gasparri),
flamonaca@deis.unical.it (Francesco Lamonaca).

tracking [9,10]. Most of these applications require basic
services such as self-localization [11,12], time synchro-
nization [13,14], and topology control [15,16]. However,
the distributed nature and the limited hardware capa-
bilities of WSNs make the development of these appli-
cations and related services particularly challenging.

In this work, we advance the state of the art by pro-
viding a solution to the clock synchronization problem
in the presence of bounded communication delays. In-
spired by the Average TimeSynch Protocol introduced
in [14], we propose a novel synchronization protocol,
denoted as Robust Average TimeSynch (RoATS), to ad-
just both the nodes’ clock frequency and clock offset in a
robust way with respect to bounded communication de-
lays. A preliminary version of the RoATS was presented
in [17]. This paper considerably improves that prelimi-
nary results in several directions. In particular, the drift
and offset compensation are now considered as two in-
dependent and asynchronous processes. As a result, the
convergence analysis has been revised and more mean-
ingful theoretical bounds have been obtained. Finally,
experiments have been carried out to corroborate the
theoretical finding in a real-world environment.

Preprint submitted to Automatica 20 May 2015

2 Related Work

Clock synchronization is an important problem in the
context of distributed systems. This problem has be-
come particularly relevant with the introduction of the
Internet, as large networks of connected computers be-
came more and more common. In this context, the most
famous protocol is the Network Time Protocol (NTP)
introduced in [18]. NTP was designed for large-scale
networks with a rather static topology (such as the In-
ternet). Nodes are externally synchronized to a global
reference time that is injected into the network at many
places via a set of master nodes. Master nodes are syn-
chronized out of band, for example via GPS, and diffuse
the notion of time to the other nodes by following a
hierarchical scheme. Major limitations concerning the
application of NTP to WSNs are the highly dynamic
nature of the network topology, the limited bandwidth,
and the necessity of a completely decentralized archi-
tecture to ensure robustness and flexibility. In the past
years, several algorithms have been designed to deal
specifically with the typical WSNs requirements, such
as low energy consumption, bandwidth constraints and
long-term operation. Several surveys concerning the
clock synchronization problem in WSNs can be found in
the literature. Among the others, it is worth mentioning
[19], where a comparison of different synchronization
protocols is carried out on the basis of a palette of per-
formance indexes, e.g., precision, accuracy, cost, and
complexity. A more recent survey can be found in [20],
where the latest advances in the field of clock synchro-
nization of WSNs are reported from a signal processing
perspective. Apart from the seminal approaches such
as the Reference-Broadcast Synchronization (RBS) [21]
and the Timing-sync Protocol for Sensor Networks
(TPSN) [22], relatively few protocols taking into account
noisy measurements and delays have been proposed. In
[23], the authors introduce a protocol to synchronize a
network of controlled discrete-time double integrators
which are nonidentical, with unknown model parame-
ters and subject to additive measurement and process
noise. In [24], by assuming the dynamic nature of the
network to be modeled as a Markov chain, the authors
propose a distributed algorithm for the estimation of
scalar parameters from noisy relative measurements. In
particular, they prove the estimates to be mean square
convergent under fairly weak assumptions. In [25], the
joint Maximum-Likelihood Estimation (MLE) of clock
offset and skew is introduced assuming an exponential
delay model. In [26], the authors derive three clock-
synchronization algorithms for WSNs under unknown
delays. In [27], a clock synchronization algorithm, called
the Iterative Gaussian mixture Kalman particle filter
(IGMKPF) is introduced. Briefly, this combines the
Gaussian mixture Kalman particle filter (GMKPF)
with an iterative noise density estimation procedure to
achieve robust performance in the presence of unknown
network delay distributions.

Recently, the design of completely decentralized syn-
chronization algorithms based on the consensus ap-
proach has gained momentum. Along this line, in [28]
an algorithm based on a PI-like consensus protocol
has been introduced, where the proportional (P) part
compensates the different clock frequencies while the
integral part (I) eliminates the different clock offsets.
In [14], a distributed clock synchronization protocol,
referred to as Average TimeSync (ATS), has been intro-
duced. This protocol, which will be detailed in Section
4, is based on the cascade of two consensus algorithms
aiming at synchronizing the clock drift and offset, re-
spectively. In [29], a consensus-based protocol aiming at
reducing the clock error between geographically closely
located nodes has been proposed. In [13], the clock
synchronization problem for event-driven measurement
applications is addressed. In particular, the authors pro-
pose a consensus-based protocol which allows to achieve
high accuracy in the area where an event is detected
and ensure long network lifetime.

Compared to the state of the art, this paper provides
a novel robust protocol with provable guarantees on
the synchronization accuracy against bounded com-
munication delays. More specifically, two asynchronous
consensus-based protocols for the synchronization of the
clocks frequency and offset are introduced. Their con-
vergence properties are theoretically characterized and
experimentally validated by means of a WSN composed
of TelosB nodes [30].

3 Problem Statement

Consider a wireless sensor network composed ofN nodes
and assume that the network topology is described by
means of an undirected connected graph G = (V,E),
where V = {1, . . . , N} is the set of vertices representing
the sensor nodes and E = {(i, j)} is the set of edges de-
scribing the point-to-point channel availability. Namely,
an edge (i, j) exists if node i can transmit a packet to
node j. Note that, since the network topology is assumed
undirected the existence of an edge (i, j) implies the ex-
istence of the edge (j, i). Communication between pairs
of nodes is assumed to be asynchronous.

Each node i is equipped with a local hardware clock τi
defined as:

τi(t) = αi t+ βi, (1)

where αi ∈ [αmin, αmax] is the local clock frequency and
βi is the local clock offset. Coefficients (αi, βi) may dif-
fer for each node due to construction imperfections and
different operational conditions, e.g., different tempera-
tures for the quartz oscillators. Thus, in absence of cor-
rections, the notion of time among the nodes may quickly
diverge. To address this issue, each node is provided with
a tunable software clock τ̂i(t) defined as:

τ̂i(t) = α̂i(t) τi(t) + ôi(t), (2)

2

where α̂i(t) and ôi(t) are scalar parameters that can
be used to adjust the i-th clock frequency and offset,
respectively.

The objective of the synchronization problem is to adjust
these parameters to eventually achieve a common sense
of time in the software clock of the nodes, that is:

lim
t→∞

[τ̂i(t)− τ̂j(t)] = 0, ∀i, j ∈ V. (3)

Clearly, perfect synchronization is achievable only in the
ideal case of instantaneous transmission. Differently, in a
more realistic scenario where (random) bounded trans-
mission delays may occur, the synchronization objective
is to ensure that the difference between the nodes’ clock
remains bounded.

4 The ATS Protocol

In this section, for the reader’s convenience and for the
sake of comparison, the main aspects of the ATS pro-
tocol proposed in [14] are briefly reviewed. In the ATS,
for each update k only one directed arc ek = (j, i) of
G is involved. This implies that a single packet from
node j to node i is sent. This packet contains the tu-
ple (idj , α̂j , ôj , τj), where idj is the ID of the j-th node,
α̂j = α̂j(k − 1) = α̂j(tk) and ôj = ôj(k − 1) = ôj(tk)
are the parameters of its local software clock at time tk,
and τj = τj(tk) is the hardware timestamp of the packet,
i.e. the value of the hardware clock of node j at the mo-
ment the message is sent. Upon packet reception, node i
performs a timestamp of its hardware local clock in a
variable τij = τi(tk). We reiterate that in this context
packet transmission is assumed to be ideal and thus no
delay occurs.

At this point node i executes the local synchronization
procedure consisting of three steps:

1 Drift estimation: The i-th node computes the k-th
drift estimate αij(k) = αj/αi comparing τi and τj in
two different time instants and evaluating the relative
slopes. This requires that node i stores two variables
τj(tk′), τij(tk′) for each neighbor j, with tk′ the last
time this exchange occurred. It follows that:

αij(k) =
τj(tk)− τj(tk′)
τi(tk)− τij(tk′)

. (4)

2 Drift compensation: α̂i is updated by using the drift
estimate αij(tk) as follows:

α̂i(k) = ρvα̂i(k−1) + [1−ρv]αij(k)α̂i(k−1), (5)

where ρv ∈ (0, 1) is a design parameter.

3 Offset compensation: ôi is updated as follows:

ôi(k) = ôi(k − 1) + [1− ρo][τ̂j(tk)− τ̂i(tk)] (6)

where ρo ∈ (0, 1) is a design parameter.

The correction parameters are usually initialized as
α̂i = 1, ôi = 0, with i = 1, ..., N . The following conver-
gence result was proven in [14].

Theorem 1 Consider a WSN running the ATS proto-
col. Assume αi and βi are constant ∀ i ∈ V, the difference
between two consecutive update times is bounded, i.e.,
tk+1 − tk ≤ ∆tmax

, and there is no transmission delay.
Then if there exists an integer ∆k such that for any inte-
ger k > 0 the graph G(k,∆k) = (V, {ek, ek+1, ..., ek+∆k})
is strongly connected, all the software clocks will eventu-
ally synchronize:

lim
t→∞

[τ̂i(t)− τ̂j(t)] = 0,∀i, j ∈ V , (7)

exponentially fast.

Remark 1 As pointed out in [14] a low pass filter can
be introduced to reduce the sensitivity of αij:

αij(k) = [1− ρl]αij(k − 1) + ρl
τj(tk)− τj(tk′)
τi(tk)− τij(tk′)

(8)

where ρl ∈ (0, 1) is a design parameter. Low values of ρl
are particularly useful to cope with high communication
frequencies. The use of this low pass filter does not affect
the theoretical properties of the algorithm.

Note that Theorem 1 holds under the assumption that an
ideal communication channel is available, i.e., no trans-
mission delays occur. As theoretically shown in Sec-
tion 6.2 and experimentally demonstrated in Section 9.3,
undesired behaviors may be experienced in a more re-
alistic scenario where transmission delays occur, even if
they are arbitrarily small. This paper addresses this is-
sue by introducing a novel robust synchronization algo-
rithm.

5 Robust ATS Algorithm - General Description

The Robust ATS (RoATS) proposed in this paper con-
sists of two concurrent asynchronous algorithms:

(1) A drift compensation protocol concerning pa-
rameters α̂i, i = 1, ..., N ;

(2) An offsets compensation protocol concerning
parameters ôi, i = 1, ..., N.

A detailed description of these two protocols is given in
the sequel.

3

6 Drift Compensation Protocol

At each update k of the drift compensation, an arc
ek = (i, j) is selected. The two nodes involved in the up-
date will:

1) send a first packet to the other node, receive the packet
sent by the other, and compute their own drift esti-
mate;

2) send a second packet to the other node to communi-
cate the drift estimate, receive the packet sent by the
other node, and perform a symmetric drift compensa-
tion;

3) compensate the effect of the drift change on the offset.

The main difference compared to the ATS algorithm is
that the drift compensation is not carried out indepen-
dently by each node. Instead, a further round of com-
munication is introduced to achieve robustness against
communication delays. Intuitively, this allows to recover
an invariance property with respect to the parameters
update as in the ideal case. A detailed description of
these three steps is given hereafter.

6.1 Drift Estimation

In order to perform the k-th update, nodes i and j send
each other a packet at time tik and tjk, respectively. For
the sake of simplicity, let us focus only on the actions
performed by node i, as the same applies to agent j. The
packet received by node i contains the tuple (idj , α̂j , τj)

where idj is the ID of the j-th node, α̂j = α̂j(t
j
k) is the

drift parameter of its local software clock at time tjk, and

τj = τj(t
j
k) is the hardware timestamp of the packet per-

formed by agent j. Upon packet reception, node i im-
mediately stores the current value of its hardware local
clock in a variable τij(t

j
k) = τi(t

j
k + δik), where δik denotes

the actual (unknown) bounded transmission delay.

As for the ATS algorithm, the information contained
in the previous exchange of messages between nodes i
and j is required to estimate the drift. Denote with k′

the update when this exchange occurred. The following
information about node j is then available to node i:

< τj(t
j
k′), τij(t

j
k′), τj(t

j
k), τij(t

j
k), α̂j(t

j
k) >, (9)

where:

τj(t
j
k′) = αj t

j
k′ + βj

τij(t
j
k′) = τi(t

j
k′ + δik′) = αi t

j
k′ + αi δ

i
k′ + βi

τj(t
j
k) = αj t

j
k + βj

τij(t
j
k) = τi(t

j
k + δik) = αi t

j
k + αi δ

i
k + βi

. (10)

Node i then compute the (noisy) drift estimate as fol-
lows:

αij(k) =
τj(t

j
k)− τj(tjk′)

τij(t
j
k)− τij(tjk′)

=
αj [t

j
k−t

j
k′]

αi[t
j
k−t

j
k′]+αi[δ

i
k−δik′]

=
αj
αi

∆ij(k)

, (11)

where ∆ij(k) is the unknown multiplicative delay factor
defined as:

∆ij(k) =
1[

1 +
(δi

k
−δi

k′)

(tj
k
−tj

k′)

] . (12)

Under the following realistic and reasonable assump-
tions:

• Assumption 1: The interval between the transmis-
sion of two consecutive packets for a couple of nodes
is lower and upper bounded:

∆tmin
≤ tik − tik′ ≤ ∆tmax

,

for any update k involving node i;
• Assumption 2: There exists an upper bound δmax on

the maximum delay for the reception of a packet:

0 ≤ δik ≤ δmax, ∀ k ≥ 0;

the following bounds can be derived for the multiplica-
tive delay factor ∆ij(k):

∆min =
1

1+ δmax

∆tmin

≤ ∆ij(k) ≤ 1

1− δmax

∆tmin

=∆max. (13)

6.2 Drift Compensation

Consider the update of the standard ATS algorithm (5).
In the presence of delays, it becomes:

α̂i(k) = α̂i(k − 1) + [1− ρv][
αij(k)α̂j(k − 1)− α̂i(k − 1)

]
= α̂i(k − 1) + [1−ρv][

αj
αi

∆ij(k)α̂j(k − 1)−α̂i(k − 1)

]
.

(14)
We point out that the parameters α̂i, i = 1, . . . , N com-
puted according to (14) may diverge for some realiza-
tions of the delay. Intuitively, this can be explained by
to the lack of symmetry in the pairwise update carried
out by a pair of nodes i and j at each update k. To bet-
ter understand this point, let us consider a simple WSN
consisting only of two nodes. In particular, assume that

4

node 1 updates at each odd k and node 2 updates at
each even k.

Therefore, for an odd k the update becomes:

α̂1(k) = α̂1(k−1)+[1−ρv]
[
α12(k)α̂2(k−1)−α̂1(k − 1)

]
α̂2(k) = α̂2(k−1)

,

(15)
and for an even k it becomes:

α̂1(k) = α̂1(k−1)

α̂2(k) = α̂2(k−1)+[1−ρv]
[
α21(k)α̂1(k−1)−α̂2(k−1)

].
(16)

Let assume that the following realization of the delay
occurs:

∆ij(k) = ∆ji(k) =
1

1− ε
. , (17)

with an arbitrarily small scalar ε > 0. Then, by using
the coordinates transformation α̃i = αi α̂i, i ∈ {1, 2}
and assuming ρv = 0.5, the parameters evolution can be
written as:[

α̃1(2k + 2)

α̃2(2k + 2)

]
=

1

2

[
1 1

1−ε
1

1−ε 1

] [
α̃1(2k)

α̃2(2k)

]
. (18)

The eigenvalues of the dynamical matrix in (18) are:

λ1 = 0.5− 0.5
1

1− ε
and λ2 = 0.5 + 0.5

1

1− ε
, (19)

the second of which makes the system unstable for any
arbitrarily small scalar ε > 0. This example shows that
the ATS update rule proposed in [14] may experience
problems if communication delays occur. Interestingly,
this example is valuable also to understand where the
problem lies. In this regard, consider the evolution of the
sum and of the difference between the two parameters,
namely α̃s = α̃1 + α̃2 and α̃d = α̃1 − α̃2. We have:[

α̃d(k + 2)

α̃s(k + 2)

]
=

[
λ1 0

0 λ2

] [
α̃d(k)

α̃s(k)

]
. (20)

From (20), it follows that, while the difference goes
to zero, the sum keeps growing over time. This im-
plies that the two variables reach the same value while
growing over time. This clearly makes no sense in the
context of the clock synchronization problem. Please
note that with a different realization of the delays,
e.g., ∆ij(k) = ∆ji(k) = 1/(1 + ε), it is possible to have
λ2 < 1 which is even worse, as in that case both α̃1 and
α̃2 converge to zero, meaning the two software clocks
stop. We point out that, in absence of delays everything
works as the sum of the terms is invariant. This implies
that ε = 0 and thus the eigenvalue λ2 = 1. Thus the two
α̃i converge to the same bounded nonzero value. Based
on this observation, the main idea of the RoATS is to

recover this invariance property even in the presence of
(random) bounded delays. In other words, the RoATS
algorithm is built so as to ensure the fundamental prop-
erties at the basis of the consensus between two nodes,
that are:

1) the two nodes variables must move one towards the
other, which guarantees convergence;

2) the updates must be equal in magnitude and opposite
in direction, which guarantees invariance.

To do so, the proposed update rule requires an addi-
tional communication round between each pair of nodes
i and j in order to exchange the drift estimates αij(k)
and αji(k). Indeed, by means of this information and of
the bounds ∆min and ∆max, each node can locally infer
the following inclusions:

αij(k)

∆max
≤ αj
αi
≤ αij(k)

∆min
and

∆min

αji(k)
≤ αj
αi
≤ ∆max

αji(k)
,

(21)
from which it follows:

η
ij

(k) ≤ αj
αi
≤ η̄ij(k), (22)

where:

η
ij

(k) = max

{
αij(k)

∆max
,

∆min

αji(k)

}
,

η̄ij(k) = min

{
αij(k)

∆min
,

∆max

αji(k)

}
.

(23)

At this point, each node can locally compute:

I) µ(k), which is the update direction of α̂(k) and is
defined as:

µ(k) =
1

2
sign

[
η
ij

(k)α̂j(k − 1)− α̂i(k − 1)
]

+
1

2
sign

[
η̄ij(k)α̂j(k − 1)− α̂i(k − 1)

] . (24)

Note that, by construction µ(k) = 0 in the case the two
sign functions are opposite, which happens when a safe
update direction cannot be decided.

II) Γα(k), which is the magnitude of the correction and
is defined as:

Γα(k) = min
{∣∣∣η

ij
(k)α̂j(k − 1)− α̂i(k − 1)

∣∣∣,∣∣∣η̄ij(k)α̂j(k − 1)− α̂i(k − 1)
∣∣∣,∣∣∣ 1

η
ij

(k)
α̂i(k − 1)− α̂j(k − 1)

∣∣∣,
∣∣∣∣ 1

η̄ij(k)
α̂i(k − 1)− α̂j(k − 1)

∣∣∣∣}
. (25)

5

Finally the update can be carried out by the pair of
nodes i and j as follows:

α̂i(k) = α̂i(k − 1) + [1− ρv]µ(k) Γα(k)

α̂j(k) = α̂j(k − 1)− [1− ρv]µ(k) Γα(k)
, (26)

where ρv ∈
(

1− 2αmin

αmax + αmin
, 1

)
. Note that, with no

lack of generality the parameters can be initialized as
{α̂i(0) = 1},∀ i = 1, ..., N .

6.3 Compensation of the drift change on the offset

Let tiα,k be the time at which the i-th node performs the
actual k update of the parameter α̂i on its local variable,
which means:

α̂i(t
i,−
α,k) = α̂i(k − 1)

α̂i(t
i,+
α,k) = α̂i(k).

(27)

where ti,−α,k and ti,+α,k are the left-handed limit and right-

handed limit of tiα,k, respectively. The offset must be
updated as follows:

ôi(t
i,+
α,k) = ôi(t

i,−
α,k)−∆α̂i(k)τi(t

i
α,k), (28)

where ∆α̂i(k) is defined as:

∆α̂i(k) = α̂i(k)− α̂i(k − 1). (29)

Note that, by substituting (27) and (28) in (2), the term

(28) ensures τ̂(ti,+α,k) = τ̂(ti,−α,k), thus preventing disconti-
nuities of the the software clock due to the drift updates.

Remark 2 A direct consequence of (28) is that for any
interval between t and t′ such that no offset compensation
occur, the software clock can be simply updated as:

τ̂i(t) = τ̂i(t
′) +

∫ t

t′
α̃i(t).

7 Offset Compensation Protocol

The offset compensation is based on a single packet sent
from node j and received by node i at time th. When a
packet is received, node i stores the software clock τ̂i(th)
at which the packet was received. The packet contains
the tuple (idj , τ̂j), where τ̂j = τ̂j(th− δh) is the software
clock time of node j at the time the packet was sent
and δh is the transmission delay. We assume δh to be
bounded from above, that is δh ≤ δmax. Using only this

information, the following offset compensation update is
proposed:

ôi(t
+
h) = ôi(t

−
h) + [1− ρo][τ̂j(t̃h − δh)− τ̂i(th)], (30)

under the following realistic and reasonable assumption:

• Assumption 3: The interval between the transmis-
sion of two consecutive offset compensation packets is
upper bounded:

th+1 − th ≤ ∆thmax.

Remark 3 In this work for the sake of simplic-
ity we have assumed packet delays to be bounded as
δ ∈ [0, δmax]. The RoATS protocol and the related
analysis can be adapted to cope with alternative char-
acterizations of the delay. For example in the case of
a delay distribution bounded between any two positive
values, it would be enough to modify the algorithm by
subtracting the average value of the interval in all the
related updates. As it will be proven later, the smaller
the bound of the uncertainty of the delay, the higher the
synchronization accuracy.

Remark 4 By introducing further assumptions, such as
slow variation of the channel latency, the RoATS could
be complemented with an additional estimator of the de-
lay’s bounds. This would allow to further improve the
clock synchronization accuracy by tuning the multiplica-
tive factor (13) accordingly. Finally, we point out that
stochastic modeling of the delay could be considered as
well. For example, if a normal distribution is considered,
a reasonable choice could be to set the maximum delay
to 3 times the standard deviation as about 99.73% of the
values lie within this interval. Nevertheless, a stochas-
tic modeling of the delay would demand for a stochastic
analysis of the protocol, which is beyond the scope of this
paper.

8 Algorithm Convergence Analysis

In this section, we characterize the convergence prop-
erties of the proposed RoATS algorithm. First, in Sec-
tion 8.1 we show that the nodes’ clock frequency con-
verge to a bounded set in the presence of (random)
bounded communication delays. Then, in Section 8.2 we
show that the discrepancy between any pair of nodes’
software clock remains bounded over time.

For the sake of the analysis, the coordinates transforma-
tion α̃i = αi α̂i will be used in the sequel. Accordingly:

6

I) The direction of the α̃(tk) update becomes:

µ(k) =
1

2
sign

[
1

αi

(
αi
αj

η
ij

(k)α̃j(k−1)− α̃i(k−1)

)]
+

1

2
sign

[
1

αi

(
αi
αj

η̄ij(k)α̃j(k−1)− α̃i(k−1)

)]
,

(31)

II) The magnitude of the α̃(tk) update becomes:

Γα(k) = min

{
1

αi

∣∣∣∣αiαj ηij(k)α̃j(k−1)−α̃i(k−1)

∣∣∣∣ ,
1

αi

∣∣∣∣αiαj η̄ij(k)α̃j(k−1)−α̃i(k−1)

∣∣∣∣ ,
1

αj

∣∣∣∣∣αjαi 1

η
ij

(k)
α̃i(k−1)−α̃j(k−1)

∣∣∣∣∣ ,
1

αj

∣∣∣∣αjαi 1

η̄ij(k)
α̃i(k−1)− α̃j(k−1)

∣∣∣∣} ,
(32)

III) The update for the pair of nodes (i, j) is:

α̃i(k) = α̃i(k − 1) + [1− ρv]µ(k)αi Γα(k)

α̃j(k) = α̃j(k − 1)− [1− ρv]µ(k)αj Γα(k)
. (33)

Remark 5 Note that, the nodes’ clock frequency
{αi},∀ i = 1, . . . , N is unknown. Therefore, these equa-
tions cannot be implemented in practice and will be used
only for the sake of the analysis.

8.1 Clock Frequency Convergence

The following lemma shows that the difference between
the parameters α̃i and α̃j does not increase each time
that nodes i and j perform an update.

Lemma 1 Consider a pair of nodes i and j per-
forming the (k + 1)-th update. Define the difference
εij(k) = α̃i(k)− α̃j(k). If

ρv ∈
(

1− 2αmin

αmin + αmax
, 1

)
,

the following holds:

i) The difference between the two updated parameters is
not increasing, that is:

|εij(k + 1)| ≤ |εij(k)|,

with |εij(k + 1)| < |εij(k)| if µ(k+ 1) 6= 0 and εij(k+
1) 6= 0.

ii) The updated parameters belong to the convex combina-
tion of the previous ones, that is:

α̃i(k + 1), α̃j(k + 1) ∈ conv(α̃i(k), α̃j(k)).

Proof : The proof can be found in Appendix A.

Let us now state a sufficient condition to have an error-
decreasing update.

Lemma 2 A sufficient condition for a pair of nodes i
and j performing the (k + 1)-th synchronization step to
have an update such that:

|εij(k + 1)| < |εij(k)|,

is:
α̃i(k)

α̃j(k)
>

∆max

∆min
or

α̃i(k)

α̃j(k)
<

∆min

∆max
. (34)

Proof : The proof can be found in Appendix B.

The latter result provides a sufficient condition on the
value of the ratio α̃i(k)/α̃j(k) ensuring that the error
|εij(k)| decreases, regardless of the particular realization
of the delay. Note that, this condition is only sufficient
and not necessary. In fact, as proved in Lemma 3, if
α̃i(k) 6= α̃j(k), then there always exists a nonsingular
set of delay realizations which makes |εij(k)| decrease.

Lemma 3 For any pair (i, j) for which α̃i(tk)/α̃j(tk) >
1 + ε with an arbitrary ε > 0, there exists a scalar δ̄ > 0
such that for ∀ δ1, δ2 ∈ [0, δ̄], the delay realization:

∆ij(k) = ∆max − δ1
∆ji(k) = ∆min + δ2

, (35)

ensures:
|εij(k + 1)| < |εij(k)|.

Proof : The proof can be found in Appendix C.

The following lemma characterizes the equilibria sub-
space for the ideal case of instantaneous transmission,
i.e., no transmission delay occurs. Notably, this turns
out to be instrumental for the characterization of the
convergence properties of the RoATS protocol.

Lemma 4 Consider a WSN running the RoATS algo-
rithm and assume ∆min = ∆max = 1. Assume that there
exists a finite integer ∆k such that for each update k the
graph G(k,∆k) = (V, {ek, ek+1, ..., ek+∆k}) is connected,
then span(1) is the equilibria subspace. Furthermore, for
any initial condition α̃(0) = [α̃1(0), . . . , α̃N (0)]T , the
unique equilibrium point is:

α̃e = κ1, κ =

∑N
i=1

α̃i(0)
αi∑N

i=1
1
αi

(36)

7

with α = [α1, . . . , αN]T the local clock frequency of the
nodes.

Proof: The proof can be found in Appendix D.

At this point, it is possible to prove that in the case of
(random) bounded communication delays, the set where
the nodes’ software clock frequency will eventually con-
verge is bounded and can be characterized as follows:

Theorem 2 Consider a WSN running the RoATS
algorithm and assume that there exists a finite inter-
val ∆k such that for any offset update k the graph
G(k,∆k) = (V, {ek, ek+1, ..., ek+∆k}) is equal to G 1 . If
Assumptions 1, 2 hold true, then for each pair of nodes i
and j the parameters α̃1, ..., α̃N will eventually converge
within a bounded set defined as:(

∆min

∆max

)pij
≤ α̃i(k)

α̃j(k)
≤
(

∆max

∆min

)pij
, ∀ i, j ∈ V,

(37)
with pij < N the shortest path in terms of number of
hops between the two nodes i and j in G.

Proof: The proof can be found in Appendix E.

The following corollary shows that better convergence
results can be achieved under opportune stochastic as-
sumptions.

Corollary 1 Consider a WSN running the RoATS
algorithm and assume that there exists a finite in-
terval ∆k such that for any k the graph G(k,∆k) =
(V, {ek, ek+1, ..., ek+∆k}) is equal to G. Assume that
for any positive scalar δ̄ > 0 there exists a nonzero
probability that the realization of the delay is (35) for
some δ1, δ2 ∈ [0, δ̄], then the expected value of all
α̃i(k), i = 1, .., N eventually converge, that is:

lim
k→∞

E [α̃(k)] = α̃e. (38)

Proof: Lemma 3 ensures that if at time k the error εij
between two communicating nodes i and j is nonzero,
then the probability that the two nodes will update is
nonzero. By repeating the proof of Theorem 2 in view of
this fact, the statement follows. 2

8.2 Software Clock Synchronization

The following theorem proves the robustness of the
proposed RoATS algorithm against (random) bounded
communication delays.

1 Note that, as for the previous results, this requirement
could be relaxed to the case of connectedness of G(k,∆k) =
(V, {ek, ek+1, ..., ek+∆k}). This generalization is here omitted
for the sake of clarity, as it would render the derivation of
the bounds (37) significantly more involved.

Theorem 3 Consider a WSN running the RoATS
algorithm and assume that there exists a finite in-
terval ∆k such that for each update k the graph
G(k,∆k) = (V, {ek, ek+1, ..., ek+∆k}) is connected. If
Assumptions 1, 2 and 3 hold true, then the software clock
difference τ̂j(t) − τ̂i(t) is bounded for any i, j ∈ V at
any t. Moreover there exits a scalar Mi,j > 0 such that

lim
t→∞

|τ̂j(t)− τ̂i(t)| < Mi,j , ∀ i, j ∈ V. (39)

Proof: The proof can be found in Appendix F.

Remark 6 The proof given in Appendix F is construc-
tive and it allows for an explicit computation of Mi,j if
further assumptions on the nature of the communication
scheme is taken, e.g., pre-defined communication sched-
ule. Please refer to Appendix F for further details.

9 Algorithm Validation

In this section, a validation of the RoATS clock synchro-
nization algorithm is provided. In addition, a compari-
son against the standard ATS is described. First, the ex-
perimental testbed used for the validation is described
in detail. Then, the results of the experimental valida-
tion are discussed. Finally, the results of the simulations
algorithm are described.

Fig. 1. Experimental testbed.

9.1 Experimental Testbed

The experimental testbed consisted of 22 Crossbow
TelosB nodes and a PC. In particular, 20 nodes (in-
dexed from 1 to 20) were used to implement the two
synchronization algorithms, a node (indexed as 21) was
plugged into the PC and used as ZigBee/USB proto-
col converter, and another node (indexed as 22) was
used to trigger the 20 nodes to send the service mes-
sages containing their identification number IDi, the
software clock frequency α̂i, the software clock offset
ôi and the hardware clock τi value to the ZigBee/USB
protocol converter (and in turn to the PC) at a given

8

sampling time TOS = 2s. The data collected by the PC
was then used to evaluate the synchronization accuracy
in terms of discrepancy among the software clocks τ̂i for
all i ∈ [1, 20]. Fig. 1 shows the actual realization of the
testbed.

The Crossbow TelosB mote (TPR2420) is an open source
platform featuring an IEEE 802.15.4 radio with inte-
grated antenna, a low-power micro-controller (MCU)
with extended memory, USB programming capabilities
and a sensor suite of light, temperature and humid-
ity sensors. To address the clock synchronization prob-
lem the microprocessor, the clock and the radio play
a fundamental role. In particular, the micro-controller
is a TI-MSP430 featuring a Digitally Controlled Os-
cillator (DCO) running at 8MHz with a clock period
TDCO = 0.125µs and 10kb of RAM. Furthermore, it also
features an External Crystal Oscillator (ECO) running
at 32768Hz, with clock period TECO = 30.5µs. Regard-
ing the radio equipment, the TelosB features an IEEE
802.15.4/ZigBee compliant module equipped with a RF
transceiver operating within the range [2.4000− 2.4835]
GHz, compatible with ISM band, which allows a data
rate of 250 kbps. An important feature of the radio chip
CC2420 is the MAC-layer timestamp capability. This
allows each node to read the local clock at the beginning
of the transmission or reception of the Start Frame De-
limiter (SFD) of a message, i.e the first bit. This mecha-
nism strongly reduces the random delays introduced by
the transmission and the readings of the synchroniza-
tion messages. Indeed, this mechanism was used in [14]
to support their major assumption, i.e., communication
delays are negligible with respect to Tclk, i.e., the clock
period. As the primary focus of our work is to deal with
transmission delays, we decided to perform the time-
stamp without using this MAC layer time-stamping fea-
ture. In our implementation, τ is written on the packet
by the micro-controller and then the message is passed to
the radio to be sent. Indeed, this procedure, introduces
random delays which are no longer negligible due to Car-
rier Sense Multiple Access (CSMA) policy implemented
in the radio chip. We point out that, apart from provid-
ing a better scenario for the evaluation of the proposed
RoATS algorithm, this choice was not cosmetic as there
are several hardware platforms, such as the Crossbow’s
MicaZ mote, for which this represents the only option
available to perform a timestamp. Thus, this reflects a
realistic operating condition in several application con-
texts. The same reasoning applies for the choice of Tclk.
In particular, since the precision tag “T32kHz” is not
available for all the mote platform and considering that
the transmission delay is equal to 17 ms (see Section
9.3 and [31]), the precision tag “TMilli” was adopted for
the experimental evaluation. This gives the clock period
Tclk = 1/1024s ≈ 0.98ms.

TelosB motes have been programmed by using TinyOS,
an open source operating system specifically designed
for WSN [32]. A possible description of the RoATS im-

Algorithm 1 Triggering Node Protocol Description

1: procedure RoATS-Triggering-Node
2: /* Node j wakes up and selects a neighbor i */
3: IDi ← randSel(Nj)
4: /* Node j sends a packet < IDj , α̂j , ôj , τj > */
5: sendPkg(IDi, < IDj , α̂j , ôj , τj >)
6: /* Node j waits for a packet <
IDi, α̂j , ôj , τj , α̂ij > */

7: < IDi, α̂j , ôj , τj , α̂ij >← recvPkg()
8: /* Node j apply the Offset Update */
9: ôj = ôj + (1− ρo)(τ̂i − τ̂ji)

10: /* Node j computes Drift */
11: α̂ji = (τi − τold

i)/(τji − τold
ji)

12: /* Node j sends a packet < IDj , α̂ji > */
13: sendPkg(IDi, < IDj , α̂ji >)
14: /* Node j computes Drift Compensation */
15: α̂j = α̂j + (1− ρv)(µΓa)
16: /* Node j compensate the Offset */
17: ôj = ôj −∆α̂jτji
18: end procedure

Algorithm 2 Triggered Node Protocol Description

1: procedure RoATS-Triggered-Node
2: /* Node i is triggered by a neighbor j */
3: < IDj , α̂j , ôj , τj , τij >← recvPkg()
4: /* Node i apply the Offset Update */
5: ôi = ôi + (1− ρo)(τ̂j − τ̂ij)
6: /* Node i computes Drift */
7: α̂ij = (τj − τold

j)/(τij − τold
ij)

8: /* Node i sends a packet < IDi, α̂i, ôi, τi, α̂ij >
*/

9: sendPkg(IDj , < IDi, α̂i, ôi, τi, α̂ij >)
10: /* Node i waits for a packet < IDj , α̂ji > */
11: < IDj , α̂ji, τij >← recvPkg()
12: /* Node i computes Drift Compensation */
13: α̂i = α̂i + (1− ρv)(µΓa)
14: /* Node j compensate the Offset */
15: ôi = ôi −∆α̂iτij
16: end procedure

plementation for a pair of nodes performing an update
is given in Algorithm 1 and 2, where for the sake of clar-
ity the time-dependence and the mechanism required to
ensure the feasibility of the update, i.e., availability of
all the required data and of the triggered node, are omit-
ted. In particular, Algorithm 1 describes the set of op-
erations carried out by the node triggering the update,
while Algorithm 2 describes the set of operations carried
out by the neighboring node triggered for the update.
Note that, the packets related to the update of the off-
set are piggybacked within the packets of the first round
of communication for the update of the clock frequency.
The reason of this choice is twofold: on the one hand this
leads to a simpler implementation; on the other hand
this allows a fair comparison with the ATS protocol.

9

0 2000 4000 6000
−300

−200

−100

0

100

200

300

[s]

T
c
lk

(a)

0 2000 4000 6000
−300

−200

−100

0

100

200

300

[s]

T
c
lk

(b)

6600 6800 7000 7200
−20

−10

0

10

20

[s]

T
c
lk

(c)

Fig. 2. Trend of the delay between nodes and node v1 taken
as reference is the case a) the ATS is used, and b) RoATS is
used; c) zoom on the last 600 s in the case RoATS is used.

9.2 Experimental Results

Experiments were carried out to evaluate the effective-
ness of the RoATS algorithm in a real-world scenario.
For the experimental evaluation nodes were deployed in
a region of approximately one square meter. The high
spatial density of nodes was chosen to evaluate the effec-
tiveness of the proposed algorithm in a saturated spec-
trum network. For each node i the neighborhood was
predefined in order to achieve a lattice topology. For the
experimental validation, the following parameters set-
ting was used: ∆tmin

= 10000Tclk, ∆tmax
= 10017Tclk,

ρv = 0.9 and ρo = 0.9. Fig. 2 shows the trend of the

delay between node v1 taken as a reference and the rest
of the network in the case a) the ATS algorithm is used
and b) the proposed RoATS algorithm is used. It can
be noticed that, the discrepancy of the software clocks
has an anomalous behavior in the case of the ATS al-
gorithm due to the presence of communication delays,
while it remains bounded in the case of the proposed
RoATS. Fig. 2-c) shows that after the convergence to
the bounded region is achieved, the maximum clock dis-
crepancy among each pair of nodes is bounded by 20
Tclk. This corroborates the results of Theorem 3, where
the difference of the software clocks between each pair
of nodes was proven to remain bounded over time.

9.3 Simulation Results

Simulations were carried out in order to evaluate the
scalability of the RoATS algorithm in a larger network
setup. To this end, a wireless sensor network composed
of 100 nodes deployed in a lattice topology with (ran-
dom) bounded communication delays was considered.
The same parameters setting as for the experimental
evaluation was used. In addition, since the ECO runs at
the frequency fclk = 32.768kHz± 20ppm, the clock fre-
quencies were chosen as αi ∈ [0.999980, 1.000020]fclk,
while the clock offsets were chosen as β ∈ [0, 220]Tclk.
The communication delay was modeled as a uniform dis-
tribution U(0, δmax) where δmax = 17mswas experimen-
tally measured.

Fig. 3 shows the trend of the delay between node v1

taken as a reference and the rest of the network in the
case a) the ATS algorithm is used and b) the proposed
RoATS algorithm is used. As for the experiments with
20 nodes, also in the simulation with 100 nodes the dis-
crepancy of the software clocks diverges in the case of
the ATS algorithm due to the presence of communica-
tion delays, while it remains bounded in the case of the
proposed RoATS. Fig. 3-c) shows that after the conver-
gence to the bounded region is achieved, the maximum
clock discrepancy among each pair of nodes is bounded
by 20 Tclk. Indeed, this shows that the performance of
the proposed RoATS algorithm scales well with the size
of network. Clearly, this is a crucial point for the adop-
tion of such a protocol in a real implementation.

Fig. 4 shows the trend of the α̃i for all i ∈ [1, 20] in
the case a) the ATS algorithm is used and b) the pro-
posed RoATS algorithm is used. We point out that this
comparison can be carried out only in simulations as
the actual local clock frequency αi, i ∈ V of the nodes
required to compute α̃i, i ∈ V is unknown in a real
context. Note that, the software clock frequency of the
nodes experiences a drift over time in the case of the
ATS algorithm due to the presence of communication
delays, while it remains within a bounded region in
the case of the proposed RoATS. Indeed, this corrob-
orates the results of Theorem 2, where the difference

10

0 1000 2000 3000 4000 5000 6000 7000
−600

−400

−200

0

200

400

600

[s]

T
c
lk

(a)

0 1000 2000 3000 4000 5000 6000 7000
−600

−400

−200

0

200

400

600

[s]

T
c
lk

(b)

6600 6700 6800 6900 7000 7100 7200
−20

−10

0

10

20

[s]

[T
c
lk

]

(c)

Fig. 3. RoATS Simulations: Trend of the delay between nodes
and node v1 taken as reference is the case a) the ATS is used,
and b) RoATS is used; c) zoom on the last 600 s in the case
RoATS is used.

between the software clocks frequency of each pair of
nodes was proven to remain bounded over time. In par-
ticular, Fig. 4-c) shows that after the convergence to
the bounded region is achieved, the maximum discrep-
ancy of the software clock frequency among each pair of
nodes is bounded by 1.6 · 10−6fclk.

10 Conclusion

In this work the clock synchronization problem for wire-
less sensor networks under the assumption of (random)
bounded communication delays has been addressed. A
novel robust algorithm consisting of two asynchronous
consensus-based protocols for the synchronization of the

0 1000 2000 3000 4000 5000 6000 7000
0.9996

0.9998

1

1.0002

1.0004

1.0006

[s]

α̃

(a)

0 1000 2000 3000 4000 5000 6000 7000
0.9996

0.9998

1

1.0002

1.0004

1.0006

[s]

α̃

(b)

6600 6700 6800 6900 7000 7100 7200
0.999995

1

1.000005

1.00001

1.0000151.000015

[s]

α̃

(c)

Fig. 4. ATS Simulations: Trend of the α̃i for all i ∈ [1, 20] in
the case a) ATS is used and b) the proposed RoATS is used,
c) zoom on the last 600 s in the case RoATS is used.

clocks’ frequency and offset has been introduced. A the-
oretical analysis of the convergence and robustness prop-
erties of the proposed algorithm has been presented.
Furthermore, simulations and experimental results have
been presented which corroborate the theoretical anal-
ysis, evaluate the scalability of the proposed clock syn-
chronization algorithm and show its effectiveness in a
real-world scenario.

Appendix

11

A Proof of Lemma 1

Consider the error dynamics:

εij(k+1) = εij(k)+(1−ρv)(αi+αj)µ(k+1) Γα(k+1),

to prove the lemma we must show that the direction of
the update (1 − ρv)(αi + αj)µ(k + 1) Γα(k + 1) is to-
wards the negative gradient of the difference εij(k) and
the magnitude is less than two times its absolute value.
Note that, according to the control algorithm described
in Section 6, two different scenarios might arise: either
µ(k + 1) = 0 or µ(k + 1) 6= 0.

The first case µ(k + 1) = 0 is trivial as this implies
εij(k + 1) = εij(k). For the second case µ(k + 1) 6= 0
consider the following equalities:

−εij(k)

αi
=
αj
αi
α̂j(k)− α̂i(k)

+
εij(k)

αj
=
αi
αj
α̂i(k)− α̂j(k)

. (A.1)

From (22) it follows 2 :

−εij(k)

αi
∈ conv

{
η
ij

(k + 1)α̂j(k)− α̂i(k),

η̄ij(k + 1)α̂j(k)− α̂i(k)

}

εij(k)

αi
∈ conv

{
1

η
ij

(k + 1)
α̂i(k)− α̂j(k),

1

η̄ij(k + 1)
α̂i(k)− α̂j(k)

}
, (A.2)

Therefore, according to (24), the update is forced to
move towards the negative gradient of the distance, that
is µ(k + 1) = − sign(εij(k)).

Note that, this property is not sufficient to ensure the
reduction of the distance εij(k) in absolute value, for in-
stance the two estimates might even swap and get fur-
ther away from each other. To this end, we need to en-
sure the following:

(1− ρv) (αi + αj) Γα(k + 1) < 2 |εij(k)|, (A.3)

2 The use of the convex combination instead of an interval
is required in (A.2) as it is not known a priori if η

ij
(k +

1)α̂j(k) − α̂i(k) is smaller than η̄ij(k + 1)α̂j(k) − α̂i(k) or
vice versa.

where it should be noticed that the term (1− ρv) (αi +
αj) Γα(k+1) is positive by construction. If µ(k+1) 6= 0,
from (25) and (A.2) it follows:

Γα(k+ 1) ≤ |εij(k)|
αi

and Γα(k+ 1) ≤ |εij(k)|
αj

, (A.4)

which implies that the inequality (A.3) is satisfied if the
following conditions hold true:

(1− ρv)
(αi + αj)

2αi
< 1 and (1− ρv)

(αi + αj)

2αj
< 1.

(A.5)
Since for αi, αj ∈ [αmin, αmax]

min
2αi

αi + αj
=

2αmin

αmin + αmax
,

condition (A.5) is verified if ρv ∈
(

1− 2αmin

αmin+αmax
, 1
)
,

which concludes the proof. 2

B Proof of Lemma 2

By resorting to Lemma 1 the proof simply requires to
show that condition (34) implies µ(k + 1) 6= 0.

As shown in (31), µ(k + 1) 6= 0 if and only if:

sign

[
1

αi

(
αi
αj

η
ij

(k + 1)α̃j(k)− α̃i(k)

)]
=

sign

[
1

αi

(
αi
αj

η̄ij(k + 1)α̃j(k)− α̃i(k)

)]. (B.1)

This can be re-written as:
αi
αj

η
ij

(k + 1) >
α̃i(k)

α̃j(k)
αi
αj

η̄ij(k + 1) >
α̃i(k)

α̃j(k)

OR

αi
αj

η
ij

(k + 1) <
α̃i(k)

α̃j(k)
αi
αj

η̄ij(k + 1) <
α̃i(k)

α̃j(k)

.

(B.2)

At this point by substituting (23) in (B.2), the previous
set of inequalities becomes :

max

{
∆ij(k + 1)

∆max
,

∆min

∆ji(k + 1)

}
>
α̃i(k)

α̃j(k)

min

{
∆ij(k + 1)

∆min
,

∆max

∆ji(k + 1)

}
>
α̃i(k)

α̃j(k)

OR
max

{
∆ij(k + 1)

∆max
,

∆min

∆ji(k + 1)

}
<
α̃i(k)

α̃j(k)

min

{
∆ij(k + 1)

∆min
,

∆max

∆ji(k + 1)

}
<
α̃i(k)

α̃j(k)

. (B.3)

12

Clearly (34) are sufficient conditions to satisfy (B.3). 2

C Proof of Lemma 3

It is enough to prove that there exist a δ > 0 such that
the two sets of realization satisfy (B.3). Let us substitute
(35) in (B.3). We obtain:

max

{
∆max − δ1

∆max
,

∆min

∆min + δ2

}
< 1 + ε

min

{
∆max − δ1

∆min
,

∆max

∆min + δ2

}
< 1 + ε

.

Clearly for any ε > 0 there exists a finite δ̄ > 0 satisfying
the statement of the lemma. 2

D Proof of Lemma 4

In order to prove the lemma, let us note that in the
nominal case without transmission delays we have
∆min = ∆max = 1 and thus the following holds:

sign

[
1

αi
(α̃j(k)− α̃i(k))

]
= sign

[
1

αi
(α̃j(k)− α̃i(tk))

]
.

According to (31), this implies that the only case where
a pair of nodes i and j does not update their values, i.e.,
µ(k + 1) = 0, is when they are identical:

α̃j(k) = α̃i(k). (D.1)

This implies that, if the graph is connected, the state of

equilibrium α̃e = [αe
1, ..., α

e
N]
T

must satisfy

α̃e
1 = α̃e

2 = . . . = α̃e
N−1 = α̃e

N , (D.2)

which can be written as a linear system of N − 1
equations in N unknowns. Since the update rule (26)
is built to preserve the sum of the scalar parameters
{α̂i(k)}, i = 1, . . . , N , then also the following equation
will be satisfied at the equilibrium.

∑
i=1

α̃e
i

αi
=
∑
i=1

α̃e
i (0)

αi
(D.3)

Clearly, equations (D.2)-(D.3) admits as a unique solu-
tion (36), thus proving the lemma. 2

E Proof of Theorem 2

Consider the Lyapunov Function V (k):

V (k) =
[
α̂(k)− α̂e

]T
P
[
α̂(k)− α̂e

]
, (E.1)

where α̂e =
[
κ
α1
, ..., κ

αN

]T
with κ as in (36) and P =

diag(α1, . . . , αN).

If a pair of nodes i and j performs the k+ 1 update and
if µ(k+ 1) 6= 0, the difference of the Lyapunov Function
∆V (k) = V (k + 1)− V (k) can be computed as follows:

∆V (k) =
[
α̂(k + 1)− α̂e

]T
P
[
α̂(k + 1)− α̂e

]
−
[
α̂(k)− α̂e

]T
P
[
α̂(k)− α̂e

] . (E.2)

According to the update law (33), only the parameters
α̂i(k) and α̂j(k) are modified. Thus, (E.2) can be sim-
plified as follows:

∆V (k) = αi

[
α̂i(k + 1)− κ

αi

]2

− αi
[
α̂i(k)− κ

αi

]2

+ αj

[
α̂j(k + 1)− κ

αj

]2

− αj
[
α̂j(k)− κ

αj

]2.

(E.3)

By substituting the update (33) in (E.3), it follows that:

∆V (k) = αi

[
α̂i(k) + (1− ρv)

(
µ(k + 1) Γα(k + 1)

)
− κ

αi

]2

+ αj

[
α̂j(k)− (1− ρv)

(
µ(k + 1) Γα(k + 1)

)
− κ

αj

]2

−αi
[
α̂i(k)− κ

αi

]2

−αj
[
α̂j(k)− κ

αj

]2

.

(E.4)
This expression can be further simplified as follows:

∆V (k) = 2αi

(
α̂i(k)− κ

αi

) [
(1− ρv)µ(k + 1) Γα(k + 1)

]
− 2αj

(
α̂j(k)− κ

αj

) [
(1− ρv)µ(k + 1) Γα(k + 1)

]
+ (αi + αj)

[
(1− ρv)Γα(k + 1)

]2
(E.5)

that is:

∆V (k) = 2 (1− ρ)µ(k + 1) Γα(k + 1)
[
α̃i(k)− α̃j(k)

]
+ (αi + αj)

[
(1− ρv)Γα(k + 1)

]2
(E.6)

At this point, it should be noticed that if µ(k +
1) 6= 0, combining (31) and (22) it follows that
µ(k + 1) = − sign(α̃i(k)− α̃j(k)). Therefore the previ-

13

ous equation can be written as:

∆V (k) = −2 (1− ρ) Γα(k + 1)
∣∣∣α̃i(k)− α̃j(k)

∣∣∣
+ (αi + αj)

[
(1− ρv)Γα(k + 1)

]2 (E.7)

This implies that ∆V (k) < 0 if the following holds:

(αi + αj)
[
(1− ρv)Γα(k + 1)

]2
<

2 (1− ρ) Γα(k + 1)
∣∣∣α̃i(k)− α̃j(k)

∣∣∣
(E.8)

or equivalently by recalling that εij(k) = α̃i(k)− α̃j(k)
and being Γα > 0 by definition the following holds:

(αi + αj) (1− ρv)Γα(k + 1) < 2
∣∣εij(k)

∣∣ (E.9)

As we already pointed out in Lemma 1, from (25) and
(A.2) it follows that:

Γα(k + 1) ≤ |εij(tk)|
αi

and Γα(k + 1) ≤ |εij(tk)|
αj

(E.10)
By summing the two inequalities we have that:

(αi + αj)Γα(k + 1) ≤ 2 |εij(tk)| (E.11)

which directly implies (E.9) by noticing that ρv ∈(
1− 2αmin

αmin+αmax
, 1
)

. Indeed, this proves that each time

µ(k + 1) 6= 0 the Lyapunov function decreases, that is
∆V (k) < 0.

At this point, by exploiting the result given in Lemma 2,
we know that a sufficient condition for which µ(k+1) 6= 0
is (34). This implies that, as time goes to infinity, since
there exists an interval ∆k, such that for each k the
graph G(k,∆k) is equal to G, the following holds(

∆min

∆max

)
≤ α̃i(k)

α̃j(k)
≤
(

∆max

∆min

)
, ∀ (i, j) ∈ E.

(E.12)
Therefore, for any pair (i, j) ∈ V for which the short-
est path is pij = {eis, esp, . . . , ehq, eqj} the following in-
equalities hold:(

∆min

∆max

)
≤ α̃i(k)

α̃s(k)
≤
(

∆max

∆min

)
(

∆min

∆max

)
≤ α̃s(k)

α̃p(k)
≤
(

∆max

∆min

)
...(

∆min

∆max

)
≤ α̃h(k)

α̃q(k)
≤
(

∆max

∆min

)
(

∆min

∆max

)
≤ α̃q(k)

α̃j(k)
≤
(

∆max

∆min

)
(E.13)

Finally, by multiplying these inequalities we obtain (37),
which concludes the proof. 2

F Proof of Theorem 3

In order to prove the theorem, we will consider the up-
date of the software clock at time instants t−h , i.e., the
time just before an update of the software clocks param-
eters is carried out by any given pair of nodes i and j.
For the sake of readability, the apex is omitted in the
following, i.e., t−h = th.

Consider the h-th synchronization of the offset for node i
that has just received a packet from node j. In view of
Remark 2 and of (30), the software clock of the i-th node
is:

τ̂i(th+1) = τ̂i(th) + (1− ρ)
[
τ̂j(th)− τ̂i(th)

]
+ α̃hi

[
th+1 − th

]
− (1− ρ)α̃j(th − δk)δk

where the first and second terms together represents the
synchronization update. The third term is the clock evo-
lution due to the time and it is proportional to the aver-
age value α̃hi of the clock drift between th and th+1 de-

fined as α̃hi = 1
th+1−th

∫ th+1

th
α̃i(ξ) dξ. The last term rep-

resents the effect of the transmission delay. For all the
other nodes the software clock evolves according to the
time evolution as:

τ̂w(th+1) = τ̂w(th) + α̃hw

[
th+1 − th

]
The overall update can be written in matrix form as:

τ̂(th+1) = A(h) τ̂(th) + α̃h
[
th+1 − th

]
− u(h) (F.1)

where:

• A(h) =
[
I + (1 − ρo)W (th)

]
, with W (th) = (ei −

ej)
T (ei − ej) where ei and ej are the i-th and j-th

column vectors of the canonical basis, respectively;
• α̃h = [α̃h1 , . . . , α̃

h
N]T ;

• u(h) =
[
0, . . . (1− ρ)α̃j(th − δh)δh︸ ︷︷ ︸

i−th

, . . . , 0
]T

.

By exploiting Lemma 1, it follows that if αi(0) = 1, i ∈
V , then:

α̃hi ∈
[
αmin, αmax

]
,∀i ∈ V, h ≥ 0. (F.2)

This combined with δh ≤ δmax allows us to bound u as
follows:

‖u(h)‖∞ ≤ (1− ρ0)αmaxδmax , umax. (F.3)

14

At this point let us introduce the following change of
coordinates: [

τ̂1(th)

d(th)

]
= Qτ̂(th), (F.4)

where:
Q = [e1, e2 − e1, . . . , eN − e1]

T
, (F.5)

and where ei = [0, . . . , 1, . . . , 0]T is the i-th vector of
the canonical basis. By constructionQ−1 = Q. Note that
d(th) = [τ̂2(th)−τ̂1(th), ..., τ̂N (th)−τ̂1(th)]T is the vector
of the differences of each software clock with respect to
the software clock of the first node. Furthermore, as a
consequence of this change of coordinates the following
holds:

Â(h) = QA(h)Q =

 1 ∗
0 Ã(h)

 , (F.6)

which allows us to write the dynamics of the differences
d(th), independently of the value of τ̂1(th), as:

d(th+1) = Ã(h)d(th) + [I − U]

[
w(th)

u(h)

]
, (F.7)

where:

w(th) = (th+1 − th)
[
α̃h2 − α̃h1 , . . . , α̃hN − α̃h1

]T
, (F.8)

and U = [e2 − e1, . . . , eN − e1]
T

.

Note that because of Assumption 3 we can also bound
w as:

‖w(th)‖∞ ≤
(
αmax − αmin

)
∆thmax , wmax. (F.9)

At this point, we can focus on the generic difference
τ̂i − τ̂1 with i ∈ V \ {1}, and consider the following
system:

d(th+1) = Ã(h)d(th) + [I − U]

[
w(th)

u(th)

]
yi(th+1) = eTi−1 d(th+1)

, (F.10)

with y(th+1) = τ̂i(th+1) − τ̂1(th+1). Since the unforced

linear time-varying system d(th+1) = Ã(th)d(th) is ex-
ponentially stable (as proven in [14, Theorem 6]), then
according to [33] it is also BIBO stable. It follows that
two positive scalars li,u and li,w exist such that:

lim
h→∞

|τ̂i(th)− τ̂1(th)| ≤ li,uumax + li,wwmax, (F.11)

where li,u and li,w are the `1 norm of the system (F.10)
with respect to the input u(th) and w(th).

Note that, the following holds for any time instant t ∈
(th, th+1):

|τ̂i(t)− τ̂1(th)| ≤ |τ̂i(th)− τ̂1(th)|+ (αmax − αmin) t,
(F.12)

which concludes the proof. 2

Remark 7 Please note that in general the `1 norms can-
not be easily computed a priori as they depend on the par-
ticular realization of the communication sequence. Nev-
ertheless, there are cases, e.g., in the case of a determin-
istic periodic schedule, for which this can be done. More-
over it should be noticed that the bounds derived above es-
tablish an interesting relationship between the algorithm
performance and the hardware specifications: umax given
in (F.3) is proportional to the maximal transmission de-
lay δmax, while wmax given in (F.9) is proportional to
the maximum interval between two packet transmissions
∆thmax. Finally, (F.8) shows that at each time step w(th)
is proportional to the differences α̃hi −α̃h1 which decreases
over time.

References

[1] A. Gasparri, B. Krishnamachari, G. S. Sukhatme, A
framework for multi-robot node coverage in sensor networks,
Annals of Math and Artificial Intelligence (AMAI), Special
Issue on Multi-Robot Coverage, Search, and Exploration
52 (2-4) (2008) 281–305.

[2] D. Ghataoura, J. Mitchell, G. Matich, Vigilant+: mission
objective interest groups for wireless sensor network
surveillance applications, IET Wireless Sensor Systems, 1 (4)
(2011) 229–240. doi:10.1049/iet-wss.2011.0045.

[3] T. Harms, S. Sedigh, F. Bastianini, Structural health
monitoring of bridges using wireless sensor networks, IEEE
Instrumentation Measurement Magazine, 13 (6) (2010) 14–
18. doi:10.1109/MIM.2010.5669608.

[4] T. Torfs, T. Sterken, S. Brebels, J. Santana, R. van den
Hoven, V. Spiering, N. Bertsch, D. Trapani, D. Zonta,
Low power wireless sensor network for building monitoring,
IEEE Sensors Journal, 13 (3) (2013) 909–915.
doi:10.1109/JSEN.2012.2218680.

[5] G. Hancke (Ed.), Industrial Wireless Sensor Networks:
Applications, Protocols, and Standards, CRC Press, 2013.

[6] H. Ramamurthy, B. S. Prabhu, R. Gadh, A. Madni, Wireless
industrial monitoring and control using a smart sensor
platform, IEEE Sensors Journal, 7 (5) (2007) 611–618.
doi:10.1109/JSEN.2007.894135.

[7] C. Fischer, H. Gellersen, Location and navigation support for
emergency responders: A survey, IEEE Pervasive Computing,
9 (1) (2010) 38–47. doi:10.1109/MPRV.2009.91.

[8] K. Lorincz, D. Malan, T. Fulford-Jones, A. Nawoj,
A. Clavel, V. Shnayder, G. Mainland, M. Welsh, S. Moulton,
Sensor networks for emergency response: challenges and
opportunities, IEEE Pervasive Computing, 3 (4) (2004) 16–
23. doi:10.1109/MPRV.2004.18.

[9] R. Olfati-Saber, P. Jalalkamali, Coupled distributed
estimation and control for mobile sensor networks, IEEE
Transactions on Automatic Control, 57 (10) (2012) 2609–
2614. doi:10.1109/TAC.2012.2190184.

15

[10] E. Xu, Z. Ding, S. Dasgupta, Target tracking and
mobile sensor navigation in wireless sensor networks, IEEE
Transactions on Mobile Computing, 12 (1) (2013) 177–186.
doi:10.1109/TMC.2011.262.

[11] A. Gasparri, F. Pascucci, An interlaced extended information
filter for self-localization in sensor networks, IEEE
Transactions on Mobile Computing, 9 (2010) 1491–1504.
doi:http://doi.ieeecomputersociety.org/10.1109/TMC.2010.122.

[12] H. Song, V. Shin, M. Jeon, Mobile node localization using
fusion prediction-based interacting multiple model in cricket
sensor network, IEEE Transactions on Industrial Electronics,
59 (11) (2012) 4349–4359. doi:10.1109/TIE.2011.2151821.

[13] F. Lamonaca, A. Gasparri, E. Garone, D. Grimaldi, Clock
synchronization in wireless sensor network with selective
convergence rate for event driven measurement applications,
IEEE Transactions on Instrumentation and Measurement,
63 (9) (2014) 2279–2287. doi:10.1109/TIM.2014.2304867.

[14] L. Schenato, F. Fiorentin, Average timesynch: A consensus-
based protocol for clock synchronization in wireless
sensor networks, Automatica 47 (9) (2011) 1878–1886.
doi:10.1016/j.automatica.2011.06.012.

[15] A. Aziz, Y. Sekercioglu, P. Fitzpatrick, M. Ivanovich,
A survey on distributed topology control techniques for
extending the lifetime of battery powered wireless sensor
networks, IEEE Communications Surveys Tutorials, 15 (1)
(2013) 121–144. doi:10.1109/SURV.2012.031612.00124.

[16] R. Williams, A. Gasparri, B. Krishnamachari, Route
swarm: Wireless network optimization through mobility,
in: Intelligent Robots and Systems (IROS 2014), 2014
IEEE/RSJ International Conference on, 2014, pp. 3775–3781.
doi:10.1109/IROS.2014.6943092.

[17] E. Garone, A. Gasparri, F. Lamonaca, Clock synchronization
for wireless sensor network with communication delay, in:
American Control Conference (ACC 2013), 2013, pp. 771–
776.

[18] D. Mills, Internet time synchronization: the network time
protocol, IEEE Transactions on Communications, 39 (10)
(1991) 1482–1493. doi:10.1109/26.103043.

[19] B. Sundararaman, U. Buy, A. D. Kshemkalyani, Clock
synchronization for wireless sensor networks: a survey, Ad
Hoc Networks 3 (3) (2005) 281–323.

[20] Y. C. Wu, Q. Chaudhari, E. Serpedin, Clock synchronization
of wireless sensor networks,
IEEE Signal Processing Magazine, 28 (1) (2011) 124–138.
doi:10.1109/MSP.2010.938757.

[21] J. Elson, L. Girod, D. Estrin, Fine-grained
network time synchronization using reference broadcasts,
SIGOPS Oper. Syst. Rev. 36 (SI) (2002) 147–163.
doi:10.1145/844128.844143.

[22] S. Ganeriwal, R. Kumar, M. B. Srivastava, Timing-sync
protocol for sensor networks, in: Proceedings of the 1st
international conference on Embedded networked sensor
systems, SenSys ’03, 2003, pp. 138–149.

[23] R. Carli, A. Chiuso, L. Schenato, S. Zampieri, Optimal
synchronization for networks of noisy double integrators,
IEEE Transactions on Automatic Control 56 (5) (2011) 1146–
1152. doi:10.1109/TAC.2011.2107051.

[24] C. Liao, P. Barooah, Distributed clock skew and offset
estimation from relative measurements in mobile networks
with markovian switching topology, Automatica 49 (10)
(2013) 3015–3022.

[25] Q. Chaudhari, E. Serpedin, K. Qaraqe, On maximum
likelihood estimation of clock offset and skew in networks with

exponential delays, IEEE Transactions on Signal Processing,
56 (4) (2008) 1685–1697. doi:10.1109/TSP.2007.910536.

[26] M. Leng, Y.-C. Wu, On clock synchronization algorithms
for wireless sensor networks under unknown delay, IEEE
Transactions on Vehicular Technology, 59 (1) (2010) 182–190.
doi:10.1109/TVT.2009.2028147.

[27] J. S. Kim, J. Lee, E. Serpedin, K. Qaraqe, Robust clock
synchronization in wireless sensor networks through noise
density estimation, IEEE Transactions on Signal Processing
59 (7) (2011) 3035–3047. doi:10.1109/TSP.2011.2141660.

[28] R. Carli, A. Chiuso, L. Schenato, S. Zampieri, A pi consensus
controller for networked clocks synchronization, IFAC World
Congress on Automatic Control (IFAC 08).

[29] M. K. Maggs, S. G. O’Keefe, D. V. Thiel,
Consensus clock synchronization for wireless sensor networks,
IEEE Sensors Journal, 12 (6) (2012) 2269–2277.
doi:10.1109/JSEN.2011.2182045.

[30] Crossbow technology, telosb, telosb mote platform, document
part number: 6020-0094-01 rev b.

[31] K. Lui, Performance evaluation of zigbee network for
embedded electricity meters, Master’s thesis, KTC Electrical
Engineering, Stockholm, Sweden (2009).

[32] P. Levis, S. Madden, J. Polastre, R. Szewczyk,
K. Whitehouse, A. Woo, D. Gay, J. Hill, M. Welsh,
E. Brewer, D. Culler, Tinyos: An operating system for sensor
networks, in: W. Weber, J. Rabaey, E. Aarts (Eds.), Ambient
Intelligence, Springer Berlin Heidelberg, 2005, pp. 115–148.

[33] B. Anderson, Internal and external stability of linear time-
varying systems, SIAM Journal on Control and Optimization
20 (3) (1982) 408–413. doi:10.1137/0320031.

16

