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Abstract In this paper, we propose a decentralized

model and control framework for the assignment and

execution of tasks, i.e. the dynamic task planning, for

a network of heterogeneous robots. The proposed mod-

eling framework allows the design of missions, defined

as sets of tasks, in order to achieve global objectives

regardless of the actual characteristics of the robotic

network. The concept of skills, defined by the mission

designer and considered as constraints for the mission

execution, is exploited to distribute tasks across the

robotic network. In addition, we develop a decentral-

ized control algorithm, based on the concept of skills

for decoupling the mission design from its deployment,

which combines task assignment and execution through

a consensus-based approach. Finally, conditions upon

which the proposed decentralized formulation is equiv-
alent to a centralized one are discussed. Experimental

results are provided to validate the effectiveness of the

proposed framework in a real-world scenario.
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1 Introduction

The research on robotic networks (RNs) has been very

active for over two decades [16]. RNs are groups of

multi-functional robots (often called agents) intercon-

nected by means of a communication network and capa-

ble to perform a variety of tasks such as measuring, find-

ing, tracking, following, or manipulating objects. RNs

can be formed by identical robots or by robots having

different functionalities.

The area of RNs is a challenging domain, rich of

multifaceted aspects that can be attacked from many

different viewpoints. Typically, the state of a mobile,

autonomous robot is a combination of mixed continuous-

time (position, battery charge level) and discrete-event

(busy/idle, reachable/ unreachable) information [14], [15].
When considering tracking [26], exploration [2], map-

ping [1], localization or formation [6] problems, RNs

present significant affinities with research works in the

area of multi-agent systems and distributed control over

networks [28], in which problems are amenable to continuous-

time or discrete-time models and control laws [6], [20],

or probabilistic decision-making algorithms [3]. Besides

these issues, when dealing with heterogeneous RNs, i.e.,

a RN in which each robotic agent might differ in terms

of dynamics, and/or sensing and computation capabil-

ities, the control strategy has also to deal with inher-

ently combinatorial and discrete-event driven problems.

In particular, while the continuous or discrete time in-

formation is mostly restricted within the single robots

(e.g., individual trajectory controllers handle the navi-

gation of each robot independently without needing to

share information between each other), the RNs as a

whole is a discrete-event system, in which the robot

operating condition changes, and the corresponding ef-

fects occurs only in correspondence of new events (e.g.,
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target found, intrusion detected, mission completed).

Handling the overall control of the RNs from this higher

level viewpoint is difficult, because the control system

must simultaneously address task planning, dynamic

task sequencing [11], resolution of conflicts for shared

resources [12], and event-based feedback control [25],

[23].

Several frameworks for modeling, planning and con-

trolling a RN as a discrete event system have been pro-

posed. In this context, the Petri Net (PN) formalism

proved to be an effective tool [5], [29], [17]. For exam-

ple, stochastic PNs are used in [5] to develop a frame-

work which enables modeling a robot task and analyz-

ing its qualitative and quantitative properties. In ad-

dition, PNs are combined with Monte Carlo methods

in [29] to build a generic hybrid monitoring approach

which allows the detection of inconsistencies in the nav-

igation of autonomous mobile robots using online gen-

erated models. Furthermore, logical PNs are exploited

in [17] to represent the Gantt chart of a sequence of op-

erations to be performed by limited stationary or mo-

bile resources placed at different locations in a fixed

sequence, with fixed (or roughly specified within time-

windows) service times.

In this work we propose an approach to model, ana-

lyze and control a RN using a Matrix-based Discrete

Event control Framework (MDEF) [24]. This frame-

work, which has been proven to be equivalent to Petri

Nets (PNs), has been applied to a variety of complex,

large-scale systems including manufacturing systems [18],

material handling systems, and warehouses [13]. How-

ever, RNs present substantial differences from the men-

tioned indoor and structured systems in which the use
of a central discrete-event supervisor is an ideal choice.

On the other hand, modern communication technolo-

gies based on networked environments [27], and the

ever-wide availability of computing resource onboard

of the robots stimulates the research on decentraliza-

tion of decision and control functions also at the higher

discrete-event supervisory level of the controller. The

proposed framework is modular, transparent, and based

on a set of compact matrix equations, which can be used

to simultaneously model and control the discrete-event

dynamics of the RN. In this framework, robots are able

to organize, coordinate and synchronize their activities

in an autonomous way. The coherence of the informa-

tion necessary to avoid conflicts and dead-locks is guar-

anteed by means of a consensus-based mechanism on

a restricted set of robot state variables. Furthermore,

a decoupling mechanism is proposed to detach the ac-

tivities plan from its actual execution. This is achieved

by dynamically choosing which robot is doing what ac-

cording to both the network availability and the robots

capabilities each time a new event occurs. To the best

of our knowledge, this paper is the first effort to pro-

vide a thorough rationalization of the multiple decision

problems arising in a heterogeneous RN by means of a

unifying modeling and decentralized control approach

that is formally proven to be equivalent to a network

of centrally supervised robots. Notably, some of the as-

pects covered by this paper were preliminarily discussed

in our earlier contributions [8], [7].

To summarize the following contributions are made

in this paper:

i) A rigorous and unifying approach which can incor-

porate any user-defined strategy for the dynamic task

planning, i.e. the modeling and the control of the exe-

cution of groups of tasks (missions), and for the online

task assignment to the heterogeneous robots;

ii) A decoupling mechanism of the structure of mis-

sions from the network of agents, by introducing the

concept of skills. This mechanism allows to decompose

missions into distributed models for the decentralized

task execution control and task assignment systems on

board each robot;

iii) A real-world implementation of a heterogeneous

RN, operating in an indoor environment to underline

the feasibility of the proposed decentralized dynamic

task planning system.

2 Problem Statement

In this section we define the Dynamic Task Planning

(DTP) problem that is solved in this paper. Before for-

malizing the DTP problem, we introduce some basic

definitions.

2.1 Heterogeneity and Mission Structure

Consider a heterogeneous network V = {v1, . . . , vn} of

n robotic agents and m tasks T = {t1, . . . , tm} which

have to be accomplished by the network. The network

V is referred to as heterogeneous because robotic agents

might differ in terms of dynamics, and/or sensing and

computation capabilities, e.g., agents might be equipped

with different sensors, such as short range cameras,

laser scanners or sonars, or might have different pay-

loads, or might have different kinematics. The concept

of skills is introduced to model this heterogeneity. Skills

either reflect the structural capabilities of the robotic

agent (for instance, agents can be equipped with differ-

ent sensors, such as short range cameras, laser scanners

or sonars, or agents can have different payloads) or al-

low to define abstract categories in order to establish

a hierarchy among agents (for instance, some agents
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might serve as a communication network for the oth-

ers). Thus, we define S = {s1, . . . , sp} as the set of

all skills owned by all agents in V . Moreover, we de-

fine Svi ⊆ S as the set of skills owned by the agent

vi ∈ V , thus ∪vi∈V Svi = S. Since the same skill can be

owned by different robots in the network, the following

condition may occur, ∩vi∈V Svi 6= ∅
In our framework, a task is a generic job or action

which can be executed by a single robot (e.g. reaching

a target, measuring the temperature, finding an object

in a real-world environment, etc.). A robot can execute

a single task at time and a task have to be executed

by a robot at time. This means that we consider the

cooperation among robots not for a single task but for

a set of tasks with the same goal. This concept will be

better explained later in this section. Tasks are non-

preemptive [21], i.e. the execution of a task cannot be

resumed if it has been interrupted.

Moreover, a task is the atomic unit of work that an

agent can execute exploiting its own skills. Thus, given

the task tj ∈ T , we defineRtj as the set of skills required

by the task tj to be executed by an agent. Furthermore,

let us define R = {s1, . . . , sr} as the set of all skills

required by all tasks in T , i.e. R = ∪tj∈TRtj . Also in

this case, the same skill can be required by different

tasks, thus we may obtain ∩vi∈VRvi 6= ∅. Therefore,

the generic task tj can be executed by the generic robot

vi if and only if Rtj ⊆ Svi .
In order to define how to group tasks to achieve a

single goal, let us now introduce the following concept:

Definition 1 (Mission) A mission w is defined by the

tuple 〈Tw, Rw, Xw, Uw, Y w〉, where Tw ⊆ T is the set

of tasks involved in the mission w; Rw ⊆ R is the set of

skills required by the tasks in Tw; Xw is the set of rules,

which are symbols that describe the logical links among

pairs of tasks, within the mission w. These symbols de-

termine the precedence rules of tasks in the execution

flow of the mission w; finally Uw and Y w are the sets of

inputs and output events, respectively. Input events in

Uw are symbols used to indicate the conditions which

trigger the start of the mission w (a sensory input, a

user command, etc.). Specifically, each symbol in Uw

is univocally related to a single task in Tw. Thus, the

mission w starts when one or more tasks, related to

symbols in Uw, start. Output events in Y w are sym-

bols used to indicate the completion of the mission w.

Also in this case, each symbol in Y w is univocally re-

lated to a single task in Tw. The symbols in Y w indicate

which tasks determine the end of the mission w. Using

the link between tasks in Tw and events in Uw and Y w

we can model the relationship between the skills in Rw

requested to start and to accomplish a given mission w.

Furthermore, we define with W = {w1 . . . wq} the

set of the q missions that have to be completed by all

the robots in the network V . It is worth to notice that,

to maintain the abstraction of the concept of task, the

generic task tj can belong only to a specific mission wχ,

i.e. tj ∈ Twχ and tj /∈ Twk ∀ wk ∈W \{wχ}. If the same

job, in the real world (for instance, carry an object, take

a measurement, build a map, etc.), have to be executed

within two or more different missions, that job will be

labeled as different tasks in T , one for each mission.

Thus, the set T can be defined as T = ∪wk∈WTwk and,

as a result, we obtain ∩wk∈WTwk = ∅.

Remark 1 (Cooperative Mission Planning) It may be

useful to note that in the proposed framework we define

the concept of cooperation among robots at a mission

level rather than at a task level. Thus, we can obtain

cooperative planning designing missions in which each

robot executes its own task and all the tasks in the

mission start with the same input and the end of all

the tasks triggers the mission end.

It is worth noticing that, given the set of missions W

and the related sets of rules {X1, . . . Xw}, the proposed

framework can model different types of execution flows

of tasks in T :

– Parallel execution: a rule xk ∈ Xwχ , in mission wχ,

determines the start of task tj ∈ Twχ and, at the

same time, a rule xl ∈ Xwγ , in mission wγ , deter-

mines the start of task tj ∈ Twγ ;

– Ordered execution: a rule xk ∈ Xwχ determines the

start of task tj ∈ Twχ after the termination of the

task tk ∈ Twχ ;

– Synchronized execution: a rule xk ∈ Xwχ deter-

mines the start of multiple tasks in Twχ after the

termination of the task tk ∈ Twχ .

2.2 The Dynamic Task Planning Problem

In this paper, given the generic mission w ∈W , we as-

sume that tasks in Tw can be subject to two categories

of constraints: precedence constraints and assignment

constraints. The precedence constraints define the exe-

cution order of tasks, i.e. one or more tasks may have

to be accomplished before another task is allowed to

be started. The assignment constraints define the task-

agent assignment according to the skills required by

the task and the skills owned by the agent. Keeping in

mind this last concept and given the definitions above,

we are now ready to define the key issue addressed in

this paper:



4 Donato Di Paola et al.

Fig. 1 Abstract representation of the dynamic task planning
scenario: we represent the set of agents at the top and the set
of tasks, in a mission, with the precedence constraints (gray
arrows) at the bottom. The rectangles beside the agents and
tasks indicate the skills owned by each agent and required
by each task. The orange arrows indicate a possible task to
agent assignment.

Problem 1 (Dynamic Task Planning (DTP))

Given a heterogeneous network of robots V and a set

of tasks T , on which a set of missions W is defined,

design a system which controls missions in W , where

the execution is determined by input events in U and

output events in Y , ensuring their accomplishment. In

the execution of each mission wk ∈W , all tasks in Twk

have to match dynamically the precedence constraints

defined by rules in Xwk and the assignment constraints

expressed by skills in Rwk .

The main objective of this paper is to solve this prob-

lem in a decentralized fashion. The DTP problem is

defined as “dynamic” because the robots do not have

any knowledge about information which change over

time, neither on the current situation of the whole net-

work nor on the current state of the mission execution.

However, each robot knows a set of static information,

i.e. the skills it owns and the structure of the missions

that have to be executed. The key idea of the paper

is to represent these two different kinds of information

by using the concept of skill as a tool to decouple the

structure of missions, which contains the static infor-

mation, from the network of agents, which dynamically

executes the missions and fulfills the constraints. In or-

der to solve the DTP problem we propose a decentral-

ized framework which operates in a event-driven fash-

ion. Two different kinds of events are considered: events

(more frequents) which trigger the discrete-event con-

trol of the mission execution, and events (possibly less

frequents) which activate the task assignment algorithm

to ensure the assignment constraints expressed by the

skills.

The diagram in Fig. 1 gives an overview of the de-

scribed DTP problem. The circles at the top represent

the n robots in V and the rectangles at the bottom

represent the set of ω tasks Tw for a generic mission

w ∈ W . Tasks are connected by gray dotted arrows

which represent precedence constraints. For instance,

task t2 can be executed only after task t1 is completed,

while tasks t3 and t4 will start at the same time after

the completion of task t2. The set of skills is represented

by a stack of rectangles each one identified by a differ-

ent color. The set of skills required for the execution of

a task Rtj is represented by the stack next to it, while

the set of skills owned by a robot Svi is described by the

stack next to it. Note that a white rectangle indicates,

for a task the fact that the skill is not required for the

execution of the task, while for a robot the fact that the

skill is not owned by it. The orange solid arrows from

the robots to the tasks indicate a possible assignment.

The assignment, driven by a generic objective function

(minimize the paths of all robots, minimize the time to

visit the task locations, etc.) which determines the best

assignment among all possible ones, have to match the

constraints between the skills required by the tasks and

the skill owned by the robots. For instance, task t1 can

be executed by all robots in the network, while tasks t4
can be executed only by the robot v2.

3 Dynamic Task Planning Model

In this section we present the discrete-event mission

model of the proposed DTP framework. The key idea

is to decouple the design of a set of missions (i.e. how

tasks are linked within each mission) from their deploy-

ment (i.e. how tasks can be distributed to robots in the

network) by introducing the concept of skills. First we

describe the centralized mission model, which is inde-

pendent from the network of robots. Then, we develop

an algorithm to decompose the centralized model into

local mission models, on the basis of the skills owned

by each robot in the network. Furthermore, in the next

section, we show how the local model can be used in

the cooperative execution of all mission for the entire

network.

3.1 Centralized Mission Model

In this subsection we present the Centralized Mission

Model (CMM), based on the original matrix-based dis-

crete event model presented in [24]. In this work, we

extend this model to deal with a decentralized control

scenario by introducing the concept of skills. The reader

is referred to the Appendix for an overview on Boolean

algebra and matrix operations.
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3.1.1 Single Mission Definition

Given the generic mission w belonging to the mission

set W , the precedence constraints defined by rules in

Xw are represented through the following two sets of

Boolean matrices. The set of preconditions matrices for

each mission w ∈W is defined as follows:

Definition 2 (Input matrix) Let Fu
w ∈ B|Xw|×|Uw|

be the boolean input matrix with the entry Fu
w
(j,k) set

to “1”, if the occurrence of the k-th input of mission

w is an immediate prerequisite for the activation of the

j-th rule.

Definition 3 (Task-end matrix) Let Ft
w ∈ B|Xw|×|Tw|

be the boolean task-end matrix for the mission w, where

an entry Ft
w
(j,k) is set to “1” if the completion of the

task k is a necessary prerequisite for the rule j to be

fired.

The set of postconditions matrices for each mission w ∈
W is defined as follows:

Definition 4 (Task-start matrix) Let St
w ∈ B|Tw|×|Xw|

be the boolean task-start matrix where the entry St
w
(j,k)

is set to “1” if the task j of mission w starts as the result

of the fired rule k.

Definition 5 (Output matrix) Let Sy
w ∈ B|Y w|×|Xw|

be the boolean output matrix. The entry Sy
w
(j,k) is set

to “1” when the j-th output event is a consequence of

the activation of the rule k.

Note that, the matrices introduced above provide

static information, since they do not change over time,

concerning the evolution of a generic mission w. By con-

trast dynamic information, such as tasks completion or
the occurrence of input and output events, are provided

by the following set of vectors, concerning the current

iteration τ .

Definition 6 (Input vector) Let uw(τ) ∈ B |Uw| be

the boolean column vector which describes the occur-

rence of an input event for the mission w. The element

uw(j)(τ) is set to “1” when the j-th triggering event (a

threshold on a sensor signal, a user input, etc.) occurs.

Definition 7 (Task vector) Let tw(τ) ∈ B |Tw| be

the boolean column vector which describes the status

of all tasks belonging to mission w. The element tw(j)(τ)

is set to “1” if the j-th task is completed and to “0”

otherwise.

Definition 8 (Output vector) Let yw(τ) ∈ B |Y w|
be the boolean column vector which describes the ac-

complishment of the mission w. The element yw(j)(τ)

is set to “1” when the j-th output event, such as the

successfully mission completion, occurs.

The preconditions on completed tasks and the occur-

rence of input events are linked through rules, i.e., if a

given combination of preconditions is verified, then the

corresponding rule is fired. The result of the evaluation

of logical preconditions for the mission w is summarized

by the following boolean vector:

Definition 9 (Rule vector) Let xw(τ) ∈ B |Xw| be

the boolean column vector which describes the activa-

tion of rules for the mission w. The element xw(j)(τ) = 1

denotes that rule j is fired, i.e. all the preconditions to

rule j are true.

We recall that the key idea proposed in this paper is

to decouple agents from tasks by introducing the con-

cept of skills. After defining the task set Tw, which is

part of the general mission w ∈W , we need to define a

way to indicate which skills, identified by the elements

of the set Rw, among the all possible skills in R are re-

quired to perform tasks in Tw. To this end we introduce

the following matrix:

Definition 10 (Skill-Task matrix) Let Σt
w ∈ B|R|×|Tw|

be the skill-task matrix for the mission w. The element

Σt
w
(j,k) = 1 indicates that the task k identified by the

element tk ∈ Tw, requires the skill j identified by the

element sj ∈ Rw among all skills in R.

It is important to note that Σt
w can not contain null

columns, as this would mean that a task does not re-

quire skills to be executed. As a result, we define the

following matrix:

Definition 11 (Skill-Rule matrix) Let Σx
w ∈ B|R|×|Xw|

be the skill-rule matrix for the mission w, obtained by

the following expression Σx
w = Σt

w � St
w, where �

is the logical matrix product (see Appendix for further

details). The element Σx
w
(j,k) = 1 indicates that the rule

k identified by the element xk ∈ Xw, requires the skill

j identified by the element sj ∈ Rw among all skills in

R.

3.1.2 Multiple-Mission Definition

In order to model the simultaneous evolution of dif-

ferent missions, we consider the set W of the q mis-

sions that have to be completed by all robots in the

network. Moreover, let us define the following global

sets: the global rule set X = ∪wk∈WXwk , the global

input set U = ∪wk∈WUwk , and the global output set

Y = ∪wk∈WY wk .

Postconditions and preconditions for all missions in

W can be represented by diagonal block matrices, in

which a block corresponds to an individual mission. For
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instance, the global input matrix Fu ∈ B|X|×|U | is de-

fined as follows:

Fu = diag( Fu
w1 , Fu

w2 , . . . , Fu
wq ),

where Fu
wk corresponds to mission wk ∈W . Similarly,

we define the global task-end matrix Ft ∈ B|X|×|T |, the

global task-start matrix St ∈ B|T |×|X|, and the global

output matrix Sy ∈ B|Y |×|X|.
In order to complete the multiple -mission model of

the missions, let us now introduce the control matrix

which allows to control the activation of each rule in X:

Definition 12 (Control matrix) Given the set of

rules X, we define Fuc ∈ B|X|×|X| as the control matrix

that is the matrix I|X|×|X|, i.e. the identity matrix of

size |X|. This matrix allows to control the activation of

each rule in X as we will show later.

All the matrices defined above can be denoted using

the following compact notation. We define the precon-

dition matrix F as follows:

F = [Fu Ft Fuc Fy], (1)

where Fy ∈ B|X|×|Y | is a null matrix introduced for

dimensional constraints. In the same way, we define the

postcondition matrix S as follows:

S = [(Su)T (St)
T (Suc)T (Sy)T]T. (2)

where Su ∈ B|U |×|X| and Suc ∈ B|X|×|X| are null ma-

trices introduced for dimensional constraints and the

superscript T indicates the operation of transposition.

Given q missions in W , we define the global skill-task

matrix Σt ∈ B|R|×|T | and the global skill-rule matrix

Σx ∈ B|R|×|X| as:

Σt = [ Σt
w1 Σt

w2 . . . Σt
wq ],

Σx = [ Σx
w1 Σx

w2 . . . Σx
wq ].

Note that these last two matrices are defined differently

from the previous ones, since the number of rows of Σt

and Σx is equal to the number of global skills in R.

Furthermore, a set of global vectors is introduced.

Let us define the global rule vector x(τ) ∈ B|X| as the

vector which represents the state of all rules belonging

to all missions in W , by stacking together the q rule

vectors as follows:

x(τ) = [ (xw1)T(τ) (xw2)T(τ) . . . (xwq )T(τ) ]T.

(3)

Similarly, we define the following global vectors: the

global task vector t(τ) ∈ B|T |, the global input vector

u(τ) ∈ B|U |, and the global output vector y(τ) ∈ B|Y |.

Fig. 2 An illustrative example: the mission set W composed
of two missions {w1, w2}, the tasks set T = {t1, t2, t3, t4, t5},
and the all skills required by all tasks R = {s1, s2, s3}.

An Illustrative Example - Part I

In order to highlight the enhancements of the proposed

Centralized Mission Model (CMM) for heterogeneous

networks, we provide the following illustrative example.

A schematic representation of two missions, w1 and w2,

is shown in Fig. 2.

Following the composition rules presented above and

deriving the matrices of the missions w1 and w2 from

the diagram, the following sets of global matrices are

obtained. The preconditions matrix F is obtained by

combining, as in the eq. (1), the following matrices:

Fu =

[
Fu

w1 0
0 Fu

w2

]
=



u1 u2

x1 1

x2 0 0
x3 0
x4 1
x5

0
0

x6 0
x7 0


,

Ft =

[
Ft
w1 0

0 Ft
w2

]
=



t1 t2 t3 t4 t5

x1 0 0

x2 1 0 0
x3 0 1
x4 0 0 0
x5

0
1 0 0

x6 0 1 0
x7 0 0 1


,

Fuc
=

[
I3×3 0

0 I4×4

]
, Fy =

[
00
00

]
.

Similarly, the postconditions matrix S is obtained
by combining, as in the eq. (2), the following matrices:

St=

[
St
w1 0
0 St

w2

]
=



x1 x2 x3 x4 x5 x6 x7

t1 1 0 0

0t2 0 1 0
t3 1 0 0 0

t4 0 0 1 0 0
t5 0 0 1 0

,
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Algorithm 1 Global matrices partition procedure

Input: F∗,S∗,ϕ[i]

Output: [F∗[i],S∗[i]]

1: for j ← 1 : |ϕ[i]| do

2: if ϕ
[i]
(j) = 1 then

3: F∗[i] ← F∗(j,h) ∀h ∈ {1, . . . , |F∗|c}
4: S∗[i] ← S∗(h,j) ∀h ∈ {1, . . . , |S∗|r}
5: end if
6: end for
7: for k ← 1 : |F∗[i]|c do

8: if (F∗
[i]
(j,k) = 0 and S∗

[i]
(k,j) = 0) ∀j ∈ {1, . . . , |ϕ[i]|}

then
9: F∗[i] ← delc(F∗[i], k)

10: S∗[i] ← delr(S∗[i], k)
11: end if
12: end for

Sy=

[
Sy

w1 0
0 Sy

w2

]
=

[x1 x2 x3 x4 x5 x6 x7

y1 0 0 1 0
y2 0 0 0 0 1

]
,

Su=

[
00
00

]
, Suc

=

[
00
00

]
.

The global matrix which describes the heterogeneity
of the tasks is defined as

Σt = [Σt
w1 Σt

w2 ]=


t1 t2 t3 t4 t5

s1 1 0 1 0 0
s2 0 1 0 1 0
s3 0 0 0 1 1

,
and the matrix which describes the heterogeneity of

the rules as Σx = [Σx
w1 Σx

w2 ].

Moreover, the global vectors associated to missions

w1 and w2 are defined as: u(τ) ∈ B2, t(τ) ∈ B5, y(τ) ∈
B2, and x(τ) ∈ B7. Furthermore, at the initial condi-

tions (τ = 0) all these vectors have all entries equal to

zero.

3.2 Decentralized Mission Model

In this subsection, we illustrate how to decompose the

proposed CMM in order to obtain a decentralized set of

Local Mission Models (LMMs) suitable for a distributed

implementation.

Given the network of robots V , we introduce the

following vector to describe the relationship between

the generic agent vi and the rules in X which define

the missions in W .

Definition 13 (Rule-enable vector.) Letϕ[i] ∈ B |X|
be the boolean column vector indicating which rules in

X the agent vi is able to fire. The element ϕ
[i]
(j) is set

to “1” if the j-th rules can be fired by vi.

3.2.1 Local Matrices

Given the rule-enable local vector ϕ[i] is now possible

to partition the set of missions in order to obtain only

the tasks that the agent vi ∈ V is able to perform.

Thus, each pair of matrices of the global model, denoted

by (F∗,S∗), where ∗ can be u, t, uc or y, is decom-

posed by each single agent vi.to obtain the local pair of

matrices, denoted by (F
[i]
∗ ,S

[i]
∗ ) to describe only tasks,

control inputs, and input and output events related to

the agent vi. In other words, each agent removes from

the matrices all the information related to skills that

it does not own. This procedure is described in Algo-

rithm 1, assuming that the operators |·|c and |·|r return

the number of columns and rows of the evaluated ma-

trix, respectively. Moreover, functions delc(M, j) and

delr(M, j) erase both the j-th column and the j-th row

of the matrix M.

Thus, the following local matrices of the missions

model are obtained for each agent vi ∈ V :

Definition 14 (Local input matrix) Let us define

the local input matrix Fu
[i] as a sub-matrix of Fu ob-

tained erasing the j-th row of Fu where ϕ
[i]
(j) = 0.

Definition 15 (Local task-end matrix) Let us de-

fine the local task-end matrix Ft
[i] obtained erasing the

j-th row of Ft where ϕ
[i]
(j) = 0.

Definition 16 (Local task-start matrix) Let us de-

fine the local task-start matrix St
[i] obtained erasing

the j-th row of St where ϕ
[i]
(j) = 0.

Definition 17 (Local output matrix) Let us define

the local output matrix Sy
[i] as a sub-matrix of Sy ob-

tained erasing the j-th column of Sy where ϕ
[i]
(j) = 0.

Moreover, we also obtain the local control matrix Fuc

[i]

and Fy
[i], Su

[i], and Suc

[i] which are null matrices in-

troduced for dimensional constraints as in the global

model (eq. 1-2).

3.2.2 Local Vectors

To complete the definition of the local mission model

of the agent vi ∈ V also the global vectors have to be

partitioned. The local rule vector x[i](τ) is obtained by

resizing the global rule vector x(τ) according to the

dimension of the matrices S[i] and F[i]. Also, the set

of local vectors has to be resized according to the local

matrices dimension. Moreover, as for the matrix set a

vector to control the activation of rule has to be defined:

Definition 18 (Control vector) Let uc
[i](τ) ∈ B |X|

be the boolean column vector which inhibits or allows
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the firing of a rule in X. The element uc
[i]
(j)(τ) is set

to “1” when the firing of the j-th rule, at the discrete

event iteration (τ), is allowed.

In particular, local vectors can be put together in a

novel local vector, called local marking vector which can

be represented as follows at the discrete event iteration

τ :

m[i](τ) = [u[i](τ)T t[i](τ)T uc
[i](τ)T y[i](τ)T]T,

where u[i](τ) is the local input vector (whose length is

equal to the number of columns of Fu
[i]), t[i](τ) is the

local task vector (whose length is equal to the number

of columns of Ft
[i]), uc

[i](τ) is the local control vec-

tor (whose length is equal to the number of columns

of Fuc

[i]) and y[i](τ) is the local output vector (whose

length is equal to the number of rows of Sy
[i]).

3.2.3 Task Duration

It is important to note that the local mission model

described above does not take into consideration the

tasks execution time. Thus, we need to introduce the

concept of duration of a task. By denoting with τ the

discrete event iteration, let us split the local marking

vector m[i](τ) into two vectors of the same dimensions

in order to take into account the duration of tasks:

m[i](τ) =•m[i](τ) + m• [i](τ),

where •m[i](τ) is the precondition part of the marking

vector, which can be trigger the activation of one or

more rules, defined as:

•m[i](τ) = [u[i](τ)T •t[i](τ)T uc
[i](τ)T y0

[i](τ)T]T, (4)

and m• [i](τ) is the postcondition part of the marking

vector, which represents the consequence of the activa-

tion of one or more rules, defined as:

m• [i](τ) = [u0
[i](τ)T t• [i](τ)T uc0

[i](τ)T y[i](τ)T]T.

(5)

The vectors y0
[i](τ), u0

[i](τ), and uc0
[i](τ) are suitable

null vectors and •t[i](τ) and t• [i](τ) are the vectors of

tasks completed and tasks to be started, respectively.

In order to maintain the global identification of tasks

and events and to allow agents to exchange this infor-

mation, a function to map the local indexes into the

global ones must be introduced for both •m[i](τ) and

m• [i](τ) vectors. To this end, we define the following

vector.

Definition 19 (Marking Index vector) Let us de-

fine µ[i](τ) ∈ {1, . . . , |m(τ)|}|m[i](τ)| as the marking in-

dex vector, where the expression µ
[i]
(j)(τ) = k means that

the value in the position j in the local vector •m[i](τ)

(or equivalently m• [i](τ)) has to be mapped to the k-

th position of the global vector •m(τ) (or equivalently

m•(τ)). Where •m(τ) is the precondition part of the

global marking vector and m•(τ) is the postcondition

part of the global marking vector.

3.3 Analysis of The Distribution of the Computational

Load

Given the decomposition mechanism described above,

it is possible to devise a metric to study the relation-

ship between the set of missions and the network of

agents in charge to execute them in term of computa-

tional load. We have considered the global and local

precondition and postcondition matrices, (F, S) and

(F[i], S[i]), respectively. The number of elements the

matrix F (which is the same of matrix S), given by

α = |x(τ)| · |m(τ)|, can give a metric to quantify the

computational load of each LMM in the decentralized

implementation, because, as we will see in Section 4,

the Centralized Task Execution (CTE) algorithm per-

forms the main equations using the F and S matrices.

In the same way, for each agent vi we can define the

local metric for matrix F[i] (or equivalently S[i]) such

as αvi = |x[i](τ)|×|m[i](τ)|. Thus we can define the dis-

tribution degree of the computational load for the agent

vi as:

δvi =
αvi
α
. (6)

Moreover we can evaluate the mean distribution degree

of the computational load across the network as:

〈δ〉 =
1

n

n∑
i=1

αvi
α
. (7)

Obviously, this metrics depends on the set of skills of

each robot, thus the more the network is homogenous,

the closer the value of 〈δ〉 is to 1. Conversely, the more

the network is heterogeneous, the closer the value of 〈δ〉
is to 1/α. This metric will be used to illustrate the ben-

efit of the distribution of the proposed approach in the

implementation of a real-world scenario in Section 5.

An Illustrative Example - Part II

In this subsection we describe the decomposition of a

mission set for one agent. Consider the mission set W
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Fig. 3 Partition of missions: the same mission set W of Fig. 2
where only rules, tasks, and skills belonging to agent vi ∈ V ,
with set skill Svi = {s1, s2}, are highlighted.

as in the first part of this example, depicted in Fig. 2.

We consider, the two missions {w1, w2}, with a global

set of skills S = {s1, s2, s3}, and a network V in which

the agent v1 owns the set of skills Sv1 = {s1}. Due to

the skill set Sv1 , not all the tasks can be executed by

the agent v1, as reported in Fig. 3. This could represent

a scenario where there are two tasks, the first requires

the usage of a short range camera while the second re-

quires the combined use of a short range camera and

a laser scanner. Clearly, a robotic agent equipped only

with a short range camera cannot execute the second

task by itself. Thus, given the precondition matrix F,

the postcondition matrix S, and using the partition pro-

cedure described in Algorithm 1, we can obtain the set

of local matrices. For instance, consider the mission w2

and associated matrix Ft
w2 , we obtain the local matrix

Ft
[1]w2

for the agent v1 as follows:

Ft
w2 =


t3 t4 t5

x4 0 0 0
x5 1 0 0
x6 0 1 0
x7 0 0 1

 ⇒ Ft
[1]w2

=

[ t[1]2

x
[1]
3 0

x
[1]
4 1

]
,

and, at the same time, we also obtain the matrix St
[1]w2

,

St
w2 =


x3 x4 x5

t3 1 0 0
t4 0 1 0
t5 0 0 1
t6 0 0 0

 ⇒ St
[1]w2

=
[x[1]3 x

[1]
4

t
[1]
2 1 0

]
.

We can notice that, for mission w2 , tasks t4 and t5 can-

not be executed by agent v1. Thus the matrices Ft
[1]w2

and St
[1]w2

are related only to the task t3, which is

indicated, locally for agent vi, with the label t
[1]
2 . Sim-

ilarly for mission w1 only the task t1 can be executed,

thus this is indicated locally as t
[1]
1 . The correspondence

between global and local indices is represented in the

marking index vector µ[1](τ), which is defined after the

decomposition procedure, when matrices F[1], S[1], and

the precondition •m[1](τ) and postcondition m• [1](τ)

marking vectors, associated to missions, are properly

obtained. In this example, for robot v1, the distribu-

tion degree (equation 6) is:

δv1 =
αv1
α

=
4 · 8
7 · 16

=
32

112
= 0.28.

This means that by means of the decentralization proce-

dure the computational load of the agent v1 is approxi-

matively 0.3% of the global (centralized) computational

load.

4 Dynamic Task Planning Control

In this section, given the LMM, introduced in the pre-

vious section, we develop a decentralized dynamic task

planning solution to control the execution of tasks, match-

ing the precedence constraints, and to online assign the

tasks to the robots in the network. Furthermore, we

prove that the evolution of the consensus-based dis-

tributed algorithm is equivalent to the evolution of the

centralized one, under the assumption of equivalence

of the solution of the centralized and distributed task

assignment algorithm. To this end, first we introduce

the centralized algorithm for the control of task execu-

tion, then we propose the decentralized dynamic task

planning algorithm.

4.1 Centralized Dynamic Task Planning

In this subsection, first some fundamental concepts of
the centralized Matrix-based Discrete Event control Frame-

work (MDEF) proposed in [24], are reviewed. This for-

malism is used as the basis of the algorithm which en-

sures the correct execution of tasks. Then, the main

equations of the centralized task planning algorithm are

described.

4.1.1 Matrix-based Discrete-Event control Framework

The control of task execution, as a part of the dynamic

task planning framework, can be viewed as a dynami-

cal system where inputs are represented by events that

have been triggered and tasks that have been com-

pleted, while outputs are represented by tasks that have

to be executed and user outputs. In order to describe

how the dynamical system evolves and outputs are ob-

tained, let us now introduce some useful concepts.

Definition 20 (Logical State Equation) The evo-

lution of the internal state of this control system, i.e.,
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Algorithm 2 Centralized Task Execution at iteration

τ
Input: [u(τ),• t(τ), z(τ)]
Output: [t•(τ), y(τ)]

1: uc(τ)← ((St)T � h(z(τ) > 0))
2: •m(τ) ← (u(τ),uc(τ),• t(τ))
3: x(τ)← ¬ (F� ¬ •m(τ))
4: Update(•m(τ),m•(τ))
5: m•(τ) → (t•(τ),y(τ))

how logical values of rules are calculated, at iteration

τ , is obtained by means of the following logical state

equation:

x(τ) = ¬ (F� ¬ •m(τ)). (8)

where ¬ and � are the unitary operation complement

and logical matrix product, respectively (see Appendix

for further details).

In [24], an important relationship between the Matrix-

based Discrete Event control Framework (MDEF) and

the Petri Nets (PNs) has been proven. Indeed, the same

holds for the proposed dynamic task planning frame-

work for heterogeneous robots.

Proposition 1 (MDEF - PNs Equivalence) Let us

define the set of transitions X containing elements of

vector x, and the set of places A containing elements of

vectors u, t, uc, and y. Thus the tuple (X , A, FT , S) is

a PN [19] equivalent to the centralized model described

in Section 3.1, where matrices F and S are the global

preconditions matrix and the global postconditions ma-

trix, respectively. Moreover, the marking transition of

the equivalent PN can be obtained using the PN transi-
tion equation:

m(τ + 1) = m(τ) + [ST − F]Tx(τ). (9)

where m(τ) is the global marking.

A complete dynamical description of the system can

be then achieved by combining the logical state equa-

tion (8) with the PN transition equation (9), where the

vector x(τ) is exactly the global rule logical vector de-

fined in equation (3).

4.1.2 Centralized Dynamic Task Planning

At this point, according to Definition 20 and the CMM

representation presented in the previous section, we

present the Centralized Dynamic Task Planning (CDTP)

algorithm. This algorithm requires a Centralized Task

Assignment (CTA) algorithm to obtain the preliminary

data for the CTE algorithm. Note that, the description

of the particular implementation of the CTA algorithm

goes beyond the scope of this paper. Therefore we de-

scribe only the CTE algorithm assuming the following

requirements for the CTA algorithm: if an event occurs,

i.e. a new mission start event or a completion of a task,

the CTA algorithm is triggered. The produced assign-

ment is stored in the vector z(τ) ∈ V |T |, where if the

generic task tj is assigned to robot vi, at the discrete

event iteration τ , we have z(τ)(j) = i. This information

will be used to trigger the execution of the assigned

tasks as follows.

As a first step of the CTE algorithm, described in

Algorithm 2, the control vector uc(τ) is updated on

the basis of the CTA (line 1 of Algorithm 2), where the

function h(·) produced a vector of the same length of z,

where the element is 1 if the inequality is verified and 0

otherwise. Thus the marking vector •m(τ) is updated

(line 2 of Algorithm 2). The activation of rules is calcu-

lated through the logical state equation in (8), by using

the updated vector •m(τ) (line 3 of Algorithm 2). After

the rule update is executed, which indicates which task

can start and if a mission is accomplished, the precon-

dition part and the postcondition part of the marking

vector are updated (line 4 of Algorithm 2). The marking

vector •m(τ) is updated as:

•m(τ + 1) =•m(τ)− FTx(τ). (10)

Note that, this equation updates the elements of •m(τ)

vector if a rule is fired, that is to say that if an event

occurs. Postconditions are determined by updating the

m•(τ) vector as follows:

m•(τ + 1) = m•(τ) + S x(τ). (11)

Note that, this equation updates the elements of m•(τ)

vector to activate tasks or to produce mission comple-

tion events. If a rule is fired the relative position of the

vector is updated, m•(j)(τ) = 1. At the end, new tasks

are triggered t•(τ) or missions are completed y(τ) ac-

cording to the information in m•(τ) (line 5 of Algo-

rithm 2).

4.2 Decentralized Dynamic Task Planning

In this subsection we present the Decentralized Dy-

namic Task Planning (DDTP) algorithm. The proposed

DDTP algorithm is composed by two parts, running

at different time scale. The first part is the Decentral-

ized Task Execution (DTE) control, which guarantees

that the precedence constraints among tasks are sat-

isfied. The second part is the Decentralized Task As-

signment (DTA) algorithm, which ensures the match-

ing of tasks and robots in order to maximize a given
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Algorithm 3 Decentralized Task Execution at itera-

tion τ
Input: [u(τ)[i],• t(τ)[i], z(τ)[i]]
Output: [t•(τ)[i], y(τ)[i]]

1: uc
[i](τ)← ((St

[i])T � h(z[i](τ) = i))
2: •m[i](τ) ← (u[i](τ),uc

[i](τ),• t[i](τ))
3: •m̂[i](τ)← Local2Global(•m[i](τ),µ[i])
4: for k ← 1 : D(G(τ)) do
5: •m̂[i](k + 1)← ⊕j∈Ni •m̂[j](k)
6: end for
7: •m̃[i](τ)← Global2Local(•m̂[i](τ),µ[i])
8: x[i](τ)← ¬ (F[i] � ¬ •m[i](τ))
9: Update(•m[i](τ),m• [i](τ))

10: m• [i](τ) → (t• [i](τ),y[i](τ))

score. Note that, the mission models decomposition in-

troduced in Section 3.2 is instrumental for the develop-

ment of the DDTP algorithm described in the following.

Indeed, this emphasizes how important the concept of

skills is to develop a decentralized framework suitable

for handling the RN heterogeneity.

4.2.1 Decentralized Task Execution

The DTE control algorithm starts when an event is

sensed over the network by the agent vi ∈ V , e.g. an

event triggered by a sensor of the completion of a task.

The Algorithm 3 shows the evolution of DTE at the

discrete event iteration τ .

If the agent vi senses an external event or com-

pletes a task, then it will update its local vectors u[i](τ)

or •t[i](τ), respectively. Moreover, each agent vi up-

dates the information related to the local control vec-

tor uc
[i](τ) by using the result of the DTA, through

the vector z[i](τ) that indicates what task is assigned

to agent vi at the discrete event iteration τ (line 1 of

Algorithm 3). The role of the task assignment algo-

rithm and the vector z[i](τ) will be clarified in the fol-

lowing. Thus, the vector •m[i](τ) is updated accord-

ingly (line 2). The new value of the vector •m[i](τ)

is mapped into •m̂[i](τ), the local copy of the global

preconditions marking vector, using the marking index

vector µ[i] (line 3). Thus, the agent vi starts a synchro-

nization mechanism to reach an agreement on •m̂[i](τ).

This is achieved by exploiting the Abstract Consensus

described in [9, Theorem 1] (Algorithm 3, line 5). It

is worth noticing that the agreement procedure is per-

formed in a different time scale k and the convergence

is reached in exactly D(G(τ)) steps, according to the

Abstract Consensus convergence property.

Then each agent vi updates the vector •m̃[i](τ), us-

ing the result of the agreement protocol through the

marking index vector µ[i]. At this step all the agents in

V share the same information about internal and exter-

nal events (line 7). Thus, each agent vi computes the

rules to be activated x[i](τ), according to •m[i](τ), us-

ing the local logic state equation (line 8 of Algorithm 3).

After the rule update, each agent vi computes the local

precondition part •m[i](τ) and the local postcondition

part m•(τ) of the marking vector as follows (line 9):

•m[i](τ + 1) =•m[i](τ)− F[i]T x[i](τ), (12)

m• [i](τ + 1) = m• [i](τ) + S[i] x[i](τ). (13)

Thus, agent vi can start the execution of new tasks

t• [i](τ) or it sends a message about the completion of

one or more missions y[i](τ), according to the informa-

tion in m• [i](τ) (line 10).

4.2.2 Theoretical Properties of the DTE

In this subsection we show the convergence property of

the DTE control algorithm and we prove that, given

the set of local controllers obtained by the decompo-

sition performed by Algorithm 1 and assuming that

the results of the centralized and decentralized task

assignment algorithm are equivalent, the Algorithm 3

is equivalent of the Centralized Task Execution (Algo-

rithm 2) described in Section 4.A.

Since the DTE algorithm (Algorithm 3) can be viewed

as a sequence of updates, its convergence depends only

upon the agreement procedure. Thus, we can provide

the following convergence condition.

Lemma 1 (Convergence of DTE) Given the net-

work V = {v1, . . . , vn} of heterogeneous agents when

each agent vi ∈ V performs the Algorithm 3, at dis-

crete event iteration τ , and assuming the communi-

cation graph G(τ) connected, the Algorithm 3 ends in

O(D(G(τ))) steps.

Proof The proof of this lemma comes from the fact that

Algorithm 3 is a sequence of statements along with the

agreement procedure in lines 4–6. Thus, according to

[9, Theorem 1], if the graph G(τ) is connected, the pro-

cedure converges in k̄ ≤ D(G(τ)) steps. As a conse-

quence Algorithm 3 ends in O(D(G(τ))) steps.

In order to prove the equivalence between the dis-

tributed formulation and the centralized one, let us now

introduce the concept of consistency in a set of local

vectors {a[i](τ)}, i = {1, . . . , n} with respect to an-

other vector a(τ), as follows:

Definition 21 A set of local vectors {a[i](τ)} with i =

{1, . . . , n} is said to be consistent, with respect to an-

other vector a(τ), if the following holds:

a(τ) = â[1](τ) ⊕ â[2](τ) ⊕ . . . ⊕ â[n](τ) (14)
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where â[i](τ) is the global map of the local vector a[i](τ)

by means of the index vector µ[i] and ⊕ is the logical

or operator.

In the following theorem the conditions under which

the decentralized formulation is equivalent to the cen-

tralized one are given.

Theorem 1 Given the network V = {v1, . . . , vn} of

heterogeneous agents and assuming we have a decentral-

ized and centralized task assignment algorithms capable

to produce the same assignment, the decentralized for-

mulation is equivalent to the centralized one if local ini-

tial conditions {•m[i](0), m• [i](0)}, with i = {1, . . . , n}
are consistent with the global ones {•m(0), m•(0)}.

Proof In order to prove the theorem, it must be shown

that the evolution of the eq. (12) and eq. (13) for the

decentralized scenario is consistent with the evolution

of eq. (10) and eq. (11) for the centralized scenario. To

this end, by recalling that the matrices of the local mod-

els are obtained by removing rows and columns from

the matrices of the centralized model, it is sufficient to

show that the local variables •m̃[i](τ), m• [i](τ) are con-

sistent with the global ones •m(τ), m•(τ). As a conse-

quence, this would imply that the vectors {z[i](τ)}, with

i = {1, . . . , n} are consistent with z(τ) on the assump-

tion of the equivalence of the task assignment. At this

point, being all the variables affecting the evolution of

the decentralized scenario consistent with the variables

affecting the evolution of the centralized scenario, their

evolution can not differ. Thus, the decentralized control

of task execution can only be completely equivalent to

the centralized one.

Let us now investigate the relationship between

{•m̃[i](τ)}, with i = {1, . . . , n} and •m(τ). To this

end, let us assume {•m[i](0)}, with i = {1, . . . , n} to

be consistent with •m(0), that is:

•m[i](0) =• m̂[1](0) ⊕ •m̂[2](0) ⊕ . . . ⊕• m̂[n](0) (15)

with ⊕ the logical or operator. Now, let us assume a

certain event to be triggered at time τ = 1. According

to the decentralized control of task execution algorithm,

the agent vi sensing this event first updates its vector
•m[i](1) and then starts the abstract consensus over
•m̂(1), obtained by means of the marking index vector

µ[i]. In a centralized scenario, the triggering event is

simply registered into the vector •m(1). However, ac-

cording to [9, Theorem 1], •m(1) also represents the

steady state of the abstract consensus. Therefore, the

local vectors {•m̃[i](τ)}, with i = {1, . . . , n} and •m(τ)

are still consistent at time τ = 1. The same reasoning

can be iterated over time for any step τ .

Let us now investigate the relationship between {m̃• [i](τ)},
with i = {1, . . . , n} and m•(τ). To this end, let us as-

sume {m• [i](0)}, with i = {1, . . . , n} to be consistent

with m•(0), that is:

m• [i](0) = m̂• [1](0) ⊕ m̂• [2](0) ⊕ . . . ⊕ m̂• [n](0) (16)

with m̂• [i](0) the global version of the local vector m• [i](0)

obtained by means of the marking index vector µ[i]. To

prove the local vectors {m• [i](τ)}, with i = {1, . . . , n}
and m•(τ) to be consistent for any step τ , it is sufficient

to notice that their evolution is not related to exter-

nal events but only to {•m̃[i](τ)}, with i = {1, . . . , n}
and •m(τ) respectively. Therefore, if we assume the

{m• [i](τ)}, with i = {1, . . . , n} and m•(τ) to be con-

sistent at time τ = 0, it is sufficient to guarantee their

consistence over time for any τ . Note that the depen-

dence on {z[i](τ)}, i = 1, . . . , n and z(τ) is not con-

sidered on the basis of the task assignment equiva-

lence, being their evolution related to the evolution of

{•m̃[i](τ)}, with i = {1, . . . , n} and •m(τ) respectively,

and thus following the same argument.

It may be useful to remark that Theorem 1 only

guarantees that the decentralization of the framework

does not directly determine a change in the perfor-

mance of the RN, because assuming that a decentral-

ized decision algorithm that makes the same choices

of a centralized decision algorithm exists, the dynam-

ics of the decentralized and centralized RNs would be

the same. However, the existence of such an equiva-

lent algorithm is not a necessary prerequisite for the

decentralized framework to work properly. Rather, the

theorem should be viewed as a means to ensure that if

the dynamics of the decentralized RN is different from

that of a centralized RN, this occurs only due to the

(often unavoidable) differences between the decision al-

gorithms.

4.2.3 Decentralized Task Assignment Requirements

In this subsection, we present how the task assignment

algorithm is embedded in the DDTP framework. As de-

scribed above, the DTE algorithm needs the support of

a task assignment algorithm, the DTA. This algorithm

is necessary to prevent situations of assignment con-

flict, i.e. the flow of execution of multiple missions can

lead to situations where a single robot has to perform

two or more tasks at the same time. Thus, the DTA

algorithm has to satisfy these requirements:

Definition 22 (DTA Requirements) Given the task

set T̄ ⊆ T , which contains the only m̄ tasks which have

to be executed at iteration τ , and set of n robots V , the

objective of the DTA algorithm is to find a conflict-free
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assignment of tasks in T̄ to each agent vi ∈ V , consid-

ering its skills Svi , that maximizes a global reward.

Differently from the CTA, where the assignment is in-

stantaneous, in the DTA we need the assignment rep-

resented by the sequence of tasks p[i] ∈ T̄λ called path,

where λ is a predefined length, that represents the ex-

ecution order of tasks assigned to vi. Thus, at each

discrete event iteration τ , we obtain a set of paths,

{p[1], . . . p[n]}, one for each agent. Using its sequence

of tasks, each agent vi can build the local first-task-

assignment vector z[i](τ) ∈ V |T |, used in the Algo-

rithm 3, as follows: the element which corresponds to

the first task of p[i] is set to “1”, i.e z
[i]

(p
[i]

(1)
)
(τ) = i ,

and it is erased from the path. Using this strategy, the

information of the sequence of tasks that agent vi will

execute is stored in p[i], while the current task, updated

at iteration τ , is stored in z[i](τ).

Different implementations of the DTA can be cho-

sen, according to the particular scenario in which the

generic objective function (minimize the paths of all

robots, minimize the time to visit the all task loca-

tions, maximize the number of items collected, etc.) is

considered.

Remark 2 (Deadlock-Free Execution) Generally, in sys-

tems of the control of task execution, deadlocks on

shared resources can occur [18]. This situation may

be prevented by using particular techniques which per-

form off-line analysis of the relationships between the

resources (robots) and tasks that use them. The main

reason behind the occurrence of a deadlock is that the

execution flow of tasks and the assignment of robots

to tasks are represented in the same static formalism.

In our framework the assignment of tasks to robots is

not given a priori, thus the problem of the assignment

is solved online, both in the case of centralized and

DDTP, guaranteeing the conflict-free assignment and

a deadlock-free task execution.

5 Implementation

The objective of this section is to provide an insight

on the major aspects concerning the implementation of

the proposed DDTP framework. For the sake of sim-

plicity, an example based on few missions, tasks and

robot skills is considered. Note that, missions are exe-

cuted in parallel in order to emphasize the framework

capability to handle the concurrent execution of tasks

and the sharing of resources.

Fig. 4 The arena used for the experimental validation.

5.1 The Testbed

The testbed used for the experiments has the following

characteristics: open software and hardware platform;

small-size mobile robots; low cost; robust, flexible and

scalable software. The main components of the system

are the arena, i.e., the physical environment where the

robots operate, and the workstation, i.e., the computer

in charge of monitoring and logging data from robots

through the communication with the DDTP architec-

ture implemented on-board each robot.

The arena is a bounded and controlled environment

in which the robots, wirelessly connected, can move to

perform the desired tasks. In our implementation, the

arena is a part of an indoor environment with bound-

aries and movable objects (i.e., small wooden items),

which can be arranged to create walls and divide the

environment in different zones. A short-range wireless

connection is adopted to link the robot among them-

selves and the network with the workstation. The latter

runs a software architecture, which is in charge of moni-

tor the connections among robots in the network, using

appropriate communication libraries. Furthermore, no

a priori knowledge about the environment configura-

tion is required by the control system. Fig. 4 shows the

arena that has been used for the experimental valida-

tion of the proposed decentralized planning architec-

ture. This is a rectangular area (2.5m× 3m) divided in

three zones. Robots which at the beginning are grouped

in the zone 1 (base-station), are supposed to perform

two patrolling missions, respectively in zone 2 and zone

3. Briefly speaking, these missions involve the explo-

ration of the assigned zones along with the detection

(if any) of an event of interest. If the event is detected,

one or more missions can be triggered, and thus dif-

ferent tasks have to be carried out. In order to per-

form these missions, robots are required to have several

skills. In this experiments, no robot is assumed to be

equipped with a sufficient set of skills to perform any



14 Donato Di Paola et al.

Fig. 5 Definition of the robotic network used in the exper-
iments: the five robots with their skills represented by the
stack of rectangles.

mission by itself. Differently, each robot has a subset of

the required skills, possibly overlapping for redundancy.

Therefore coordination among robots is mandatory for

the correct execution of these missions. Experiments

have been carried out by exploiting the mobile robotic

platform SAETTA [22].

5.2 Network and Missions Setup

We consider a network composed by five SAETTA units

V = {v1, v2, v3, v4, v5} as represented in Fig. 5. The

RN is heterogeneous because each robot has a differ-

ent sensor equipment apart from the the infrared-based

system required for the navigation (skill s1). In partic-

ular, robots {v1, v2} are provided with a buzzer to fire

an alarm (skill s2); robots {v3, v4} are equipped with

a camera (skill s3) for object recognition and finally

robot {v5} is equipped with a light emitter (skill s4).

As a result the set of skills owned by robots is defined

as S = {s1, s2, s3, s4}.
This configuration of skills allows the robots in V

to perform the following tasks:

– Patrolling {t1, t5}: an infrared-based system for the

detection of unexpected objects in the scene. This

task requires the skill {s1};
– Alarm Firing {t2, t6}: an acoustic feedback to the

user as a result of an event detection. This task re-

quires the skills {s1, s2};
– Object Recognition {t3, t7}: a vision-based system

for the identification of specific objects. This task

requires the skills {s1, s3};
– Environment Lighting {t4, t8}: a lighting system based

on a LED emitter to improve the recognition capa-

bility of the vision-based system. This task requires

the skills {s1, s4}.

This tasks are organized in two types of mission: the

Surveillance mission and the Target Analysis mission.

Fig. 6 provides a diagram of the two types of mis-

sions. The experiment involves the execution of two

instances of each mission, a pair performed in zone 2

and the other one performed in zone 3 of the arena.

Formally, the set of mission W = {w1, w2, w3, w4}, con-

tains w1 and w3 as the first and the second instances of

the mission type Surveillance, with Tw1 = {t1, t2} and

(a)

(b)

Fig. 6 Diagram of the two type of missions where labels refer
to the an instance for each kind of mission, namely Surveil-
lance mission (w1) and Target Analysis mission (w2). Note
that, the same label is used for all the events, e.g. input event
and/or completion of a task, which are precondition to fire
another even, e.g. output event and/or task start.

Tw3 = {t5, t6}, while w2 and w4 denote the first and the

second instances of the mission type Target Analysis,

with Tw2 = {t3, t4} and Tw4 = {t7, t8}. Notice that for

missions w2 and w4 (Target Analysis) a race condition

might arise for the shared resource, i.e., the environ-

mental lighting which requires a light emitter owned

only by the robot v5.

Given the diagram of Fig. 6, we can derive the ma-

trices related to the CMM for the proposed experi-

ment. The sets {Fu,Ft,Fuc ,Fy} and {Su,St,Suc ,Sy}
are the block-matrices describing respectively the set of

pre-conditions and post-conditions for the overall ex-

periment. It should be noticed that each of these ma-

trices is a block-diagonal matrix composed of 4 blocks.

This is due to the fact that two instances of each mis-

sion are considered for the experiment, thus we obtain:

Fu = diag( Fu
w1 , Fu

w2 , Fu
w3 , Fu

w4 ).

In the same way the diagonal block matrices Ft,

St, and Sy are built, while Fuc is the 14 × 14 identity

matrix, and Fy and Su are null matrices. In particular,
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the following matrices has been considered for missions

w1 and w3:

Fu
w1 = Fu

w3 =

[
1 0
0 1
0 0

]
, Ft

w1 = Ft
w3 =

[
0 0
1 0
0 1

]
,

St
w1 = St

w3 =

[
1 0
0 1
0 0

]T
, Sy

w1 = Sy
w3 =

[
0
0
1

]T
,

and for missions w2 and w4:

Fu
w2 = Fu

w4 =

 1 0 0
0 1 0
0 0 0
0 0 1

 , Ft
w2 = Ft

w4 =

 0 0
0 0
1 1
1 0

 ,

St
w2 = St

w4 =

 1 0
0 1
0 0
0 0

T , Sy
w2 = Sy

w4 =

 0 0
0 0
0 1
1 0

T .
Thus, we can derive the matrices related to the LMM.

Note that, three different sets of matrices are considered

to describe the different capabilities of the sets of robots

{v1, v2}, {v3, v4} and {v5}. Furthermore, it should be

noticed that also in the LMM formulation the matrix

Fuc

[i] is the identity matrix, and matrices Fy
[i], Su

[i],

and Suc

[i] are structurally null. As a consequence, only

the set of matrices {Fu
[i],Ft

[i]} and {St
[i],Sy

[i]} are

reported in the following.

Agents {v1,v2}:

Fu
[i] =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 , Ft
[i] =


0 0 0 0
1 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 ,

St
[i] =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0


T

, Sy
[i] =


0 0
0 0
1 0
0 0
0 0
0 1


T

.

Agents {v3,v4}:

Fu
[i]=



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

 , Ft
[i]=



0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 1

 ,

St
[i] =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0



T

, Sy
[i] =



0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 1



T

.

Agent {v5}:

Fu
[i] =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

 , Ft
[i] =



0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1

 ,

St
[i] =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0



T

, Sy
[i] =



0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 1



T

.

Computational Cost

In order to evaluate the feasibility as well as the effec-

tiveness of the proposed DDTP architecture, we inves-

tigate, using the tool defined in Section 3.3, the compu-

tational cost of the LMM formulation versus the cen-

tralized one.

As far as the computational complexity is concerned,

let us recall that for the decentralized formulation, only

a set of reduced-order matrices are considered. As ex-

plained in Section 4 this is related to the fact that in

the local model, only tasks which can be effectively ex-

ecuted by an agent are described. Indeed, the more the

network is heterogeneous the smaller the order of the

matrices is. In the proposed scenario, we obtain the fol-

lowing distribution degree (equation 6) for each robot:

δv1 = δv2 = 0.18, δv3 = δv4 = 0.52, δv5 = 0.52.

Thus, the whole robotic network has a mean distri-

bution degree of 〈δ〉 = 0.4. This means that in aver-

age the computational load of each agent is approxi-

matively 40% of the global (centralized) computational

load. Nevertheless, it should be noticed that, this is only

a (positive) side-effect of the proposed approach, being

the main objective of this paper the decentralization of

the DTP framework.

5.3 Experimental Results

In this subsection, the execution of an experiment of

the network V which execute the four missions in W

is presented. Note that to properly execute these mis-

sions each robot was implementing the algorithm [10]

for estimating its location within the arena.

Fig. 8 shows the time trace of the experiment ob-

tained by exploiting the data provided by the logging

system of the robotic network. In particular, at time
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(a) (b) (c) (d)

Fig. 7 Four different moments of the experiment. a) Robots grouped in the base-station. b) Robots v1 and v2 are reaching
the areas to be monitored. c) Object detection has been performed in zone 2. d) Object detection has been performed in zone
3.
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Fig. 8 Time trace of the experiment. Horizontal lines repre-
sent task duration while vertical (dashed) lines represent the
time instant when an input event is triggered.

τ = 0 all the robots are grouped in Zone 1 (Fig. 7-a),

while at time τ = 1 the first mission is triggered and

the robot v1 starts moving toward Zone 2 (task t1) .

Similarly, as shown in Fig. 7-b, at time τ = 9 the sec-

ond mission is triggered and the robot v2 starts moving

toward Zone 3 (task t5). At time τ = 76 an event is

detected by the robot v1 and thus the alarm is fired

to provide an acoustic feedback to the user (task t2).

Furthermore, as a consequence of the alarm firing the
object recognition task is fired at time τ = 77 (task t3).

As a result, the robot v3 starts moving towards Zone

2. At time τ = 114 the input event lighting request is

fired by the robot v3 as it realizes the scene requires

a better illumination (task t4). Since the robot v5, the

only one equipped with a LED emitter, is available, the

task can be started right away at time τ = 115. In the

meanwhile, at time τ = 97 an event is detected by the

robot v2 and thus another alarm is fired to provide an

acoustic feedback to the user (task t6). In addition, as

a consequence of the alarm firing the object recognition

task is fired at time τ = 108 (task t7). As a result, be-

ing the robot v4 available the task can be started and

the robot v4 starts moving towards Zone 3. At time

τ = 127 robot v4 fires the lighting request event for

Zone 3 as it realizes the scene requires a better illumi-

nation (task t8). Note that, since the lighting resource

owned only by the robot v5 is not available at the mo-

ment of the request, the second mission is paused. It will

be resumed at time τ = 203, as the first mission ends

at time τ = 202 (Fig. 7-c), robot v5 becomes available

again and it can start moving towards Zone 3. Finally

mission two ends at time τ = 283 (Fig. 7-d).

5.4 Complexity Analysis of Overall Framework

In this subsection the number of messages required to

be exchanged each time an event is triggered is inves-

tigated. For the sake of the complexity analysis, let us

recall that three different kind of events should be con-

sidered: (i) mission started, (ii) task ended, (iii) robot

added/removed. Note that, while the DecentralizedTask

Execution (DTE) has to be executed each time an event

is triggered, the Decentralized Task Assignment (DTA)

algorithm is required only if a robot is added or re-

moved, a mission is started or the path p[i] of a robot

is empty. In particular, while the first two events can be

neglected as they happen rarely, the third one actually

determines the frequency by which the DTA algorithm

is run. Let us now review the complexity of the two al-

gorithms to determine the dominant operation. As far

as the abstract consensus algorithm is concerned, the

CTE algorithm takes at most D(G(k)) steps to con-

verge, therefore since each robot broadcast a message at

each iteration the number of messages exchanged is of

the orderO (nD(G(k))). Regarding the DTA algorithm,

we implements the CBBA algorithm [4], which satisfies

the requirements given in Definition 22. It takes at most

min{m̄, nλ}D(G(k)) steps to converge ([4, Theorem 1]),

thus the number of messages to be exchanged is of the

order O (n min{m,nλ}D(G(k))). Clearly between the

two algorithms, the DTA turns out to be dominant in

terms of number of exchanged messages. Interestingly

enough, if we consider only the fact a task is ended as

a triggering event the analysis, the average complexity

of the overall framework becomes a design parameter

as the frequency by which a bundle becomes empty lin-

early depends on its length λ. Therefore, the larger the

bundle is the less frequently the DTA algorithm is run.
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However, it should be noticed that although a larger

bundle implies a lower number of messages to be ex-

changed, it also implies that the assignment tends to

a static one. This suggests that a proper tuning of the

parameter λ is usually case-dependent.

6 Conclusion

In this paper a novel decentralized framework for the

dynamic task planning problem for robotics networks

has been proposed. The presented framework allows

the robots to organize, coordinate and execute groups

of tasks in an autonomous way. A decoupling mecha-

nism of the structure of missions from the network of

agents, by introducing the concept of skills has been

proposed. This mechanism allows to decompose mis-

sions into distributed models for the decentralized dy-

namic task planning and execution control on board

each robot. Furthermore, the correctness of the dis-

tributed task allocation and execution is guaranteed by

proving the equivalent evolution of the proposed frame-

work respect to its centralized version.

Future work will be focused on the extension of the

proposed decentralized framework to robotic networks

with a time-varying number of units, e.g., due to failures

and/or temporary lack of connectivity.

A Boolean Algebra and Matrix Operations

A Boolean Algebra {B, ⊗, ⊕, ¬, 0, 1} is a six-tuple consist-
ing of a set B called universe, equipped with two binary
operations ⊗ called and, ⊕ called or, a unary operation ¬
called complement and two elements 0 and 1, such that the
following axioms hold: associativity, commutativity, absorp-
tion, distributivity and complements.

Let us define a general n × m logical matrix as M ∈
Bn×m, where B is the boolean set {0, 1} and let us introduce
the logical matrix product as follows:

Definition 23 (Logical Matrix Product) Let us consider
two logical matrices A ∈ Bn×m, B ∈ Bm×p. The logical
matrix product C ∈ Bn×p can be defined as: C = A � B,
where each element Ci,j is defined as:

Ci,j =
m⊕
r=1

Ai,r ⊗Br,j

for each pair (i, j) with i = {1, ..., n} and j = {1, ...p}.

Heres an example to clarify the above definition:

Example

Given the Boolean matrix A ∈ B2×2, and the Boolean col-
umn vector b ∈ B2, defined as follows:

A =

[
1 0
0 1

]
, b =

[
1
0

]
,

the logical matrix product c ∈ B2, is given by

c = A� b

=

[
1 0
0 1

]
�
[
1
0

]
=

[
(1⊗ 1)⊕ (0⊗ 0)
(0⊗ 1)⊕ (1⊗ 0)

]
=

[
1⊕ 0
0⊕ 0

]
=

[
1
0

]
.
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