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Abstract: Sensor networks have become a widely used technology for applications
ranging from military surveillance to industrial fault detection. So far, the evolution
in micro-electronics have made it possible to build networks of inexpensive nodes char-
acterised by modest computation and storage capability as well as limited battery life.
In such a context, having an accurate knowledge about nodes position is fundamental
to achieve almost any task. Several techniques to deal with the localisation problem
have been proposed in literature: most of them rely on a centralised approach, whereas
others work in a distributed fashion. However, a number of approaches do require a
prior knowledge of particular nodes, i.e. anchors, whereas others can face the prob-
lem without relying on this information. In this paper, a new approach based on an
Interlaced Extended Kalman Filter (IEKF) is proposed: the algorithm, working in
a distributed fashion, provides an accurate estimation of node poses with a reduced
computational complexity. Moreover, no prior knowledge for any nodes is required
to produce an estimation in a relative coordinate system. Exhaustive experiments,
carried on MICAz nodes, are shown to prove the effectiveness of the proposed IEKF.
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1 INTRODUCTION

A sensor network consists of a collection of nodes deployed
in an environment that cooperate to perform a task. Each
node, which is equipped with a set of sensors and radio
connectivity, shares data to reach the common objective.

Sensor networks provide a framework in which, exploit-
ing the collaborative processing capabilities, several prob-
lems can be faced and solved in a new fashion. However,
it comes along with several challenges such as limited pro-
cessing, storage and communication capabilities as well as
limited energy supply and bandwidth. Performing a par-
tial computation locally on each node, and exploiting inter-
node cooperation, is the ideal way to use sensor networks.
Unfortunately, this modus- operandi is highly constrained
by the reduced hardware capabilities as well as by the lim-
ited energy resources that makes communication very ex-
pensive in terms of life-time for a node. As a consequence,
these constraints must be taken into account when devel-
oping algorithms able to operate in a distributed fashion.

Some basic services, such as time synchronisation or
nodes localisation, must be provided in order to properly
set-up a sensor network. In fact, basic middle ware ser-
vices, such as routing, often rely on location information,
e.g., geographic routing (Bose et al., 2001; Stojmenovic,
2002; Kuhn et al., 2003). Specifically, the localisation prob-
lem in Sensor Networks consists of finding out the locations
of nodes in regards to any topology or metric of inter-
est. This problem turns out to be difficult to be solved,
in fact in (Jackson and Jordán, 2005; Eren et al., 2004)
have been proved that a sufficient condition for a sensor
network to be localizable cannot be easily identified, even
when considering the availability of perfect measurements.
Further, several analyses showed that, especially when us-
ing the received signal strength indication (RSSI), having
reliable ranging information is fairly practical (Whitehouse
et al., 2005; Yedavalli et al., 2005; Bahl and Padmanabhan,
2000).

A taxonomy can be drawn according to the computa-
tional organisation of localisation techniques: centralised
and distributed. Centralised algorithms exploit a cen-
tral computer to perform all the complex computations
using information gathered by nodes. Distributed algo-
rithms dispense the computation over the network, allow-
ing each node to perform locally and compensating the
lack of knowledge through an intensive collaborative pro-
cessing. Both of them have advantages and drawbacks:
centralised algorithms provide good performances but they
suffer from structural weakness and do not scale very well,
whereas distributed ones often provide sub-optimal solu-
tions but they are also very robust, in terms of resilience,
and scalable.

Doherty et al. (2001) propose the semidefinite program-
ming approach (SDP) to solve the localisation problem.
The idea is to model geometric constraints between nodes
as linear matrix inequalities (LMIs), then use the semidefi-
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nite programming theory to solve it. The result is a bound-
ing region for each node, representing feasible locations
where nodes are supposed to be. The idea to use a set of
convex constraints in order to estimate the position of a
node is very elegant, but it turns out to be inaccurate as
constraints do not use precise data range. Moreover, the
algorithm provides a good estimation only when having
anchors densely deployed on the boundary of the sensor
network, a condition that can not always be guaranteed.

Biswas et al. (2006) describe an improved SDP approach
to deal with noisy distance measurements. The idea is to
take advantage of an additional technique to mitigate the
inaccuracy of the solution provided by the SDP formula-
tion. The solution provided by the DSP, though not accu-
rate, represents by the authors a good starting point for a
gradient-descent method. Furthermore, numerical results
show that by means of this approach it is possible to obtain
a solution very close to the optimal one. This approach
provides a significant improvement in the performance of
the SDP-based algorithms. However, the distributed for-
mulation is the result of a clusterisation and a local ex-
ecution of the algorithm within each subset. Therefore,
the computational complexity is merely mitigated reduc-
ing the number of nodes but the approach still remains
almost centralised.

Bulusu et al. (2002) present a RF-based distributed lo-
calisation method. The idea is to estimate the location
of a node by simply averaging the positions of all the an-
chors it is connected with. Obviously, the accuracy of the
estimation is related to the density of anchors deployed
in the environment and the density required to obtain an
acceptable estimation is fairly practical.

Moore et al. (2004) developed an algorithm focused on
providing more robust local maps. The idea is to split the
problem into a sub-set of smaller regions in which the local-
isation is performed taking advantage of the probabilistic
notion of robust quadrilaterals. A robust quad is a set of
four nodes fully-connected by distance measurements and
well-spaced in such a way that no ambiguity can arise, even
when in the presence of noise. The algorithm, which does
not requires anchors, merges the sub-regions using a co-
ordinate system registration procedure. Such a procedure
maps local reference systems into a global one providing
the best fitting matrix when in presence of a set of com-
mon nodes. Moreover, an optional optimisation step can
be provided in order to refine the local map first. This
algorithm, though performing well, tends to produce or-
phans because of both the constraints to belong to a quad,
and the merging rule.

In this paper a new approach based on an Interlaced Ex-
tended Kalman Filter is proposed. This technique, work-
ing in a decentralised fashion, provides an accurate node
estimation with an acceptable computational complexity.
It does not require any prior knowledge when an estimation
on a relative coordinate system is desired. Furthermore,
it turns out to be very robust also in presence of noisy
distance measurements.

The paper is organised as follows. In section 2, an in-
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Figure 1: Bayesian filter

troduction to the theoretical aspects that have been ex-
ploited is provided. In section 3, the proposed IEKF for
sensor networks localisation is described. In section 5, the
experimental results are proposed. Finally, in section 5,
conclusions are presented and future perspectives are dis-
cussed.

2 THEORETICAL BACKGROUND

2.1 Bayesian framework

Localisation problem in sensor network can be re–cast into
a stochastic estimation problem for a system described by
the following equations

xk = f(xk−1, uk, wk)
zk = h(xk, vk) (1)

where xk is a stochastic variable representing the locations
of the nodes, uk is the control input, wk and vk are noises
that affect the system, while f(·) and h(·) are mathemati-
cal relations that characterise the state transition and the
observation zk respectively.

In a probabilistic form, the localisation problem requires
the probability distribution p(xk|Zk, Uk) to be computed
for all times k. This probability distribution describes the
joint posterior density of the sensor locations (xk) given
the recorded observations ( Zk) and control inputs (Uk)
up to time k. In general a recursive solution for sensor
localisation problem is desirable. Such recursive solution
can be achieved applying Bayes filter ( see Fig. 1).

Starting with an estimate for the distribution
p(xk−1|Zk−1, Uk−1) at time k − 1, the joint posterior,
following a control uk and observation zk, is computed
using Bayes theorem. This computation requires that
a state transition model and an observation model are
defined, describing the stochastic effects of the control
input and observation respectively.

In a probabilistic framework the state transition model
can be described in terms of the joint prior density
p(xk|xk−1, uk). Such probability distribution exploits that
the state transition is assumed to be a Markov process in
which the next state xk depends only on the immediately
preceding state xk−1 and the applied control uk and is in-
dependent of the observations.

The observation model describes the probability of re-
trieving an observation zk when the sensor locations are
known, and is generally stated in the form p(zk|xk).

The localisation algorithm can be implemented in a stan-
dard two-step recursive prediction (time–update)

p(xk|Zk−1, Uk) =
∫

Ξ

p(xk|xk−1, uk)p(xk−1|Zk−1, Uk−1)dxk−1

(2)
and correction (measurement update) form

p(xk|Zk, Uk) =
p(zk|xk)p(xk|zk−1, Uk)

p(zk|Zk−1, Uk)
. (3)

Equations (2) and (3) provide a recursive procedure for
calculating the joint posterior p(xk|Zk, Uk), however they
cannot be implemented on a digital computer in their gen-
eral form stated above, as the joint posterior over the state
space is a density over a continuous space, hence has in-
finitely many dimensions. Therefore, any effective locali-
sation algorithm has to resort to additional assumptions.

A common approach is represented by the use of Kalman
filter (Kalman, 1960). In this context a linear or linearised
system model is required

xk = Akxk−1 + Bkuk + wk

zk = Ckxk + vk
(4)

where wk ∼N (0, Qk), vk ∼ N (0, Rk), x0 ∼ N (x̂0, P0) are
mutually independent Gaussian variables for each pair of
time instant (k, k′). The joint posterior p(xk|Zk, Uk) is
modelled by a unimodal Gaussian density. The mode of
this density (x̂k) yields the current positions of the nodes,
and the variance (Pk) represents the current uncertainty.
As only these two parameters have to be computed to prop-
agate uncertainty, there is no need to discretise the state
space. In this way the prediction becomes

x̂k|k−1 = Akx̂k−1 + Buk

Pk|k−1 = AkPk−1|k−1A
T
k + Qk

(5)

while the correction requires the computation of the well
known Kalman gain matrix

Kk = Pk|k−1C
T
k

[
CkPk|k−1C

T
k + Rk

]−1
. (6)

before update the estimate

x̂k = x̂k|k−1 + Kk(zk − ẑk)
Pk = Pk|k−1 −Kk

[
CkPk|k−1C

T
k + Rk

]
KT

k

(7)

The advantage of Kalman filter lies in its efficiency and
in the high accuracy that can be obtained, however it is not
able to cope with high nonlinear system and multimodal
distributions.

Several probabilistic global methods have been proposed
to overcome these drawbacks relaxing Gaussian assump-
tion and introducing the discretisation of the space state.
As only Kalman filter is used in the sequel here these tech-
niques are not reported, however a complete review can be
found in Doucet et al. (2001).
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2.2 Interlaced Kalman Filter

The Interlaced Kalman Filter (IKF) has been proposed in
(Glielmo et al., 1999a) to reduce computational load of the
estimation process for a class of nonlinear system. The
fundamental idea of the IKF is derived from the multi–
players dynamic game theory, where the solution of the
game is such that each player chooses its strategy as opti-
mal response to the strategy chosen by the other players.
IKF is applied to nonlinear system that can be fully lin-
earised by means of an appropriate partition of the state
space variables. In this way IKF consist of p parallel KF
implementations, each one devoted to estimate only a sub-
set of the state variable, while considering the remaining
parts as deterministic time varying parameters. The lin-
earisation error is partially alleviated increasing the noise
covariance matrices (Glielmo et al., 1999a)

For sake of clarity, let us consider a system whose system
model can be rewritten as (for the first filter i = 1 and
j = 2, while for the second i = 2 and j = 1)

x
(i)
k = Ã

(i)
k x

(i)
k−1 + f (i)(x(j)

k−1, uk) + w(i)k

zk = C(i)(x(j)
k )x(i)

k + d(i)(x(j)
k ) + v

(i)
k

(8)

where Ã
(i)
k = A(i) + F (ij)(x(j)

k−1).

First

KalmanFilter

Second

Kalman Filter

z -1

z -1

(1)
kx |k

(2)

|k k-1
P

(1)

|k k-1P

k
u

k
y

∧

(2)

k/kx
∧

(1)
kx |k-1

∧

(2)
kx |k-1

∧

(1)

|k kP

(2)

|k kP

Figure 2: Interlaced Kalman Filter

The IKF equations proceed from KF filter equations, as
is shown in Fig. 2. At the k-th step, each subfilter form a
prediction exploiting both its own estimation and the one
of the other filter, according with the following equation

x̂
(i)
k|k−1 = Ã

(i)
k x̂

(i)
k−1|k−1 + f (i)(x̂(j)

k−1|k−1) (9a)

P
(i)
k|k−1 = Ã

(i)
k P

(i)
k−1|k−1Ã

(i)T

k + Q̃
(i)
k (9b)

where

Q̃
(i)
k = Q

(i)
k + [JF,(ij)

x,j + J
f,(i)
x,j ]P (j)

k−1|k−1[J
F,(ij)
x,j + J

f,(i)
x,j ]T

(10)
being J

F,(ij)
x,j and J

f,(i)
x,j the Jacobians of the relations

F (ij)(x(j)
k−1|k−1)x

(i)
k−1|k−1 and f (i)(·) with respect to x

(j)
k .

After prediction step the estimates elaborated by the
two subfilters are exchanged and used during the update
step.

In this step the observation prediction is formed and
compared with the measure zk provided by the system

x̂
(i)
k|k = x̂

(i)
k|k−1 +K

(i)
k [zk−C(i)(x̂(j)

k|k−1)x̂
(i)
k|k−1−d(i)(x̂(j)

k|k−1)]
(11a)

P
(i)
k|k = P

(i)
k|k−1 −K

(i)
k C(i)(x̂(j)

k|k−1)P
(i)
k|k−1 (11b)

where the Kalman gain is computed applying the relation

K
(i)
k = P

(i)
k|k−1C

(i)(x̂(j)
k|k−1)

T · (12)

· [C(i)(x̂(j)
k|k−1)P

(i)
k|k−1C

(i)(x̂(j)
k|k−1)

T
+ R̃

(i)
k ]−1

in which

R̃
(i)
k = Rk +

[
J

C,(i)
x,j + J

d,(i)
x,j

]
P

(j)
k|k−1

[
J

C,(i)
x,j + J

d,(i)
x,j

]T

(13)
where J

C,(i)
x,j and J

d,(i)
x,j are the Jacobians of

C(i)(x(j)
k|k−1)x

(i)
k|k−1 and d(i)(·) with respect to x

(j)
k .

From (10) and (13) one can notice that the process
and measurement noise covariance matrices Q

(i)
k and R

(i)
k

are suitable increased by addition of positive semi definite
quantities that take into account the error introduced by
the decoupling operation. As shown in (Roumeliotis and
Bekey, 2002), indeed, it is easy to recognise that he term
added to Rk in (13) represents the cross-correlation be-
tween the filters due to innovation process, while the term
added to Q

(i)
k in (10) is related to the cross-correlation

induced by propagation process.
Notice that, in a deterministic framework, sufficient con-

ditions that guarantee the local convergence of the estima-
tor are established in Glielmo et al. (1999b).

This formulation of IKF assumes that both substate
transition mapping and observation mapping, i.e. equa-
tions (8), depend affinely on their arguments. If one re-
moves these assumptions, the algorithm can be still applied
by linearising, at each step, every subsystem obtaining the
Interlaced Extended Kalman Filter (IEKF).

3 IEKF FOR SENSOR NETWORK

In this work, a group of N nodes is deployed on a planar
environment. The nodes, that are supposed to be static,
are equipped with rangefinder sensors and limited-coverage
wireless devices in order to share information each others.

Specifically, if a node i is in the coverage area of the
node j, they are able to exchange data, i.e., their estimated
positions and the related uncertainty. In this way node i
acquires information on its relative position with respect
to node j, and vice versa.

Few nodes are equipped with absolute positioning de-
vices and there is no need to compute their positions, but
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they play the role of anchors in the network. Therefore
their locations is assumed to be a priori known.

Localization problem is regarded in the framework of
stochastic estimation. The state to be estimated is repre-
sented by the positions of the nodes

xk =




x
(1)
k

x
(2)
k
...

x
(N)
k




(14)

where x
(i)
k = [p(i)

x,k, p
(i)
y,k]T is the position of the i-th node in

a global reference frame. The measurements of the system
are the relative distances retrieved by rangefinders. All
uncertainty sources are assumed to have Gaussian distri-
bution.

An Interlaced Extended Kalman Filter is applied to es-
timate the location of the nodes. In particular N parallel
EKFs are implemented. Each one runs on a node and is
devoted to estimate its locations.

3.1 Prediction model

As mentioned above, the node are assumed to be static

x
(i)
k = x

(i)
k−1 + w

(i)
k (15)

where w
(i)
k ∈ R2 is a zero mean white noise vector with

covariance matrix Q
(i)
k .

As the state transition of each node does not affect the
location of the other nodes, in (9b) the term Q̃

(i)
k is not

computed.

3.2 Observation model

The node observations consist in the rangefinder measure-
ments. This last is composed by ni sub- vectors

z
(i,j)
k = hn(x(i)

k , x
(j)
k ) =

√
(p(j)

x,k − p
(i)
x,k)2 + (p(j)

y,k − p
(i)
y,k)2

(16)
where ni is the number of nodes in the viewing area of the
i-th node and na

i sub vectors

z
(i,j)
k = ha(x(i)

k ,M) =
√

(l(j)x − p
(i)
x,k)2 + (l(j)y − p

(i)
y,k)2

(17)
where na

i is the number of anchors in the viewing area of
the i-th node and (l(j)x , l

(j)
y ) the position of an anchor. It

should be noted that ha(·) depends on the way in which en-
vironment map is represented, in our case a list of anchors
position (l(j)x , l

(j)
y ).

Due to the non linearity of the mapping, the Jacobian
of the maps hn(·) and ha(·) have to be used, instead of
matrix C(i)(·), in equations (11) and (13).

When a node detects another one, the covariance update
is calculated according to eq. (11b). As the position of an
anchor does not affect the location of the node, in (13) the
term R̃

(i)
k is not computed, when the measurement detect

an anchor.

3.3 Complexity analysis

It is well known that the main drawbacks related with
implementation of localization algorithms based on EKF
approaches are due to huge computational load and mem-
ory occupancy. Indeed, both these quantities scales as
∼ O(N2) being N the number of the nodes.

The formulation proposed above seems to be more effi-
cient. Memory occupancy scales linearly with the number
of nodes, i.e., ∼ O(N). The computational load is dis-
tributed on the nodes. For each node i, it depends on the
number of the nodes ni and the anchors na

i in the viewing
area, and scales linearly on this, then as ∼ O(ni + na

i ).
This is an interesting feature, as, even if the solution ob-

tained by means of this algorithm is sub – optimal, it repre-
sents a trade-off between estimation accuracy and compu-
tational requirements suitable with the limited hardware
resources of nodes.

4 PERFORMANCE ANALYSIS

Several simulations have been executed in order to investi-
gate the underlying properties of the proposed IEKF, such
as the accuracy and the robustness of the estimation. In
order to achieve that, a simulation software able to gen-
erate suitable test cases has been exploited. Particular
attention has been devoted to susceptibility of the algo-
rithm to environmental factors. Specifically, the following
aspects have been taken into account:

• Density of anchor deployment

• Density of node deployment

• Level of noise of observations

Fig. 3 shows the result when considering a variable num-
ber of anchors, ranging from 1 to 9, with a fixed number of
nodes 70. According to this result, the algorithm performs
better, in terms of estimation accuracy and convergence
rate, when considering an increasing number of anchors.
In detail, two different behaviours can be recognized, con-
sidering anchors ranging from 1 to 3 or from 5 to .9. This
allows to define an optimal number of anchors to be used
for a real deployment with respect to some parameters of
interest.

Fig. 4 shows the result when considering a variable num-
ber of nodes, ranging from 10 to 90, with a fixed number
of anchors 5. According to this result, the algorithm per-
forms slightly better, in terms of convergence rate, when
considering an increasing number of nodes. However, no
significant improvement can be noticed in relation of the
accuracy of the estimation. It can be justified consider-
ing that the accuracy is mainly related to the number of
available anchors and the noise of observations.

Fig. 5 shows the result when considering a variable level
of noise with a std ranging from 0.01 m to 0.5 m, with
both a fixed number of anchors 5 and nodes 30. According
to this result, the algorithm performs better, in terms of
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Figure 3: Estimation error vs. Density of anchor deploy-
ment: variable number of anchors (from 1 to 9), fixed num-
ber of nodes (70).
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Figure 4: Estimation error vs. Density of nodes deploy-
ment: variable number of nodes (from 10 to 90), fixed
number of anchors (5).

convergence rate, when considering a decreasing level of
noise.

5 EXPERIMENTAL RESULTS

In order to prove the effectiveness of the proposed decen-
tralised IEKF in a real context several experiments have
been carried out in an indoor environment. The net-
work has been built with the MICAz (MPR2400) platform,
a generation of Motes from Crossbow Technology. The
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Iter

[m
]

 

 

0.01 [m] std
0.10 [m] std
0.2 [m] std
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Figure 5: Estimation error vs. Level of noise of observa-
tions: variable level of noise (std ranging from 0.01m to
0.5m), fixed number of anchors (5), fixed number of an-
chors (30)

MPR2400 (2400 MHz to 2483.5 MHz band) uses the Chip-
con CC2420, IEEE 802.15.4 compliant, ZigBee ready ra-
dio frequency transceiver integrated with an Atmega128L
micro-controller. It provides also a flash serial memory, as
well as a 51 pin I/O connector that allows several sensor
and data acquiring boards to be connected to it.

MICAz platform comes along with TinyOS, an open-
source event-driven operating system designed for wireless
embedded sensor networks. It features a component-based
architecture which enables rapid innovation and implemen-
tation while minimising code size as required by the severe
memory constraints inherent in sensor networks. TinyOS
component library includes network protocols, distributed
services, sensor drivers, and data acquisition tools, all of
which can be used as–is or be further refined for a custom
application.

5.1 Ranging technique

The mechanism adopted to measure the inter-node dis-
tance is the Time Difference of Arrival (TDoA). Having
each node equipped with a speaker and a microphone,
TDoA mechanisms compute the distance among nodes by
determining the difference between the time of arrival of
two pulses, characterised by a different propagation veloc-
ity.

As previously mentioned, several sensors and acquiring
boards can be connected to the MICAz (Fig. 6) platform.
In particular, two different boards – the MTS300 and the
MTS310 – both provide a sounder as well as a microphone.
The sounder is a simple 4 kHz fixed frequency piezoelec-
tric resonator, while the microphone can be used either for
acoustic ranging or for general acoustic recording and mea-
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Figure 6: Configuration of MICAz device

surement. As a consequence, according to this hardware
availability, RF and acoustic (sounder) signals have been
exploited.

The proposed ranging technique has been thoroughly in-
vestigated to understand its accuracy and consequently to
provide a better evaluation of the algorithm capabilities. A
significant amount of inter-node distances, considering also
different environmental conditions, were gathered and sta-
tistical analyses were performed. In regards to the experi-
ments in the lab bench, the ranging technique can achieve
a precision of around 3 ∼ 8 cm with a standard deviation
of 8 ∼ 14 cm according to the measured distance ( ranging
from 20 cm to 2.5 m).

Moreover, experiments have been performed to verify if
the mutual orientation of nodes can influence the distance
measured. For such a reason, two nodes were arranged
on the floor at the distance of 54 cm from each other.
Specifically, the distance was manually measured from the
sounder of the emitter to the microphone of the receiver.
Afterward, data was collected considering different orien-
tations of nodes, in order to simulate a realistic random
deployment on the ground.

Table 1: Inter-node ranging technique: experimental re-
sults.

Exp. mean std node 1 node 2
value dev orientation orientation

1 0.5781 0.1229 π/2 3π/2
2 0.5734 0.1331 3π/2 0
3 0.5888 0.1146 3π/2 3π/2
4 0.5696 0.1052 3π/2 π
5 0.5933 0.1098 3π/2 π/2
6 0.6008 0.1230 5π/4 3π/4
7 0.5972 0.1217 5π/4 π/4
8 0.5853 0.1136 5π/4 5π/4
9 0.5683 0.1181 5π/4 5π/2
10 0.5892 0.1186 5π/4 π
11 0.5786 0.1239 5π/4 7π/4
12 0.5668 0.1299 0 0

Table 1 shows the statistic results using more than 200
measurements for each configuration. According to the

experimental results, there are no significant variations on
the obtained measures when considering different mutual
orientations. However, as mentioned above, data presents
a bias as well as a considerable standard deviation that
makes their use challenging.

The bias and the standard deviation describe the un-
certainty in the observing process. Several are the sources
of such uncertainty. First of all, the parameters used to
characterise the propagation velocity of an acoustic wave
in the air have been considered fixed, while they change
according with humidity and temperature. Secondly, the
transmission protocol introduces a delay, which cannot be
taken into account, as it is not directly observable.

5.2 Evaluation criteria

In order to evaluate the effectiveness of the proposed algo-
rithm, two indexes of quality have been considered for each
node and for each axes: the estimation error, computed us-
ing the Euclidean distance as a metric, and the estimation
covariance. Moreover, some global indexes have been also
taken into account: maximum, minimum and average er-
ror of estimation, the velocity of convergence and finally,
the percentage of estimation failures. The first two indexes
give an idea about the local algorithm behaviour, whereas
the other ones give an evaluation of the global algorithm
performance.

In order to have a better evaluation of the proposed
IEKF, a comparison against two other approaches has been
carried out. To make the comparison fair, algorithms were
executed batch under the same conditions exploiting Mat-
lab code developed by authors. In particular, 100 trials
were run for each configuration. Afterwards, the collected
data were used to compute the indexes of interest previ-
ously described.

The first comparison was against a centralised version of
an Extended Kalman Filter with the aim of better under-
stand the advantages as well as the drawbacks that arise
when decentralising an algorithm.

The second comparison was against the algorithm for
Relative Location Estimation proposed in Patwari et al.
(2003). In detail, it is a Maximum-Likelihood Estimator
(MLE) that works in a centralized fashion. The Mat-
lab code, that is freely available, can be downloaded at
http://www.eecs.umich.edu/~hero/localize/.

5.3 Network deployment

The robotics laboratory of University of “Roma Tre” has
been exploited for the network deployment. Two differ-
ent configurations have been built and several data acqui-
sitions have been done. Moreover, different anchors lo-
cations have been considered in order to understand the
performances when changing the configuration. Real lo-
cations were measured manually taking advantage of the
regularity of the flooring grid.

Specifically, Fig. 7 describes the first configuration that
has been considered. Here, three anchors were deployed on
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Figure 7: First configuration for the network deployment:
anchors (1-3) were arranged on the border, while nodes to
be localised (4-8) were randomly positioned.

the border of the network so that optimal nodes coverage
could be guaranteed. In addition, each node was ideally
within the communication range of each other so that a
full connected graph was available.

Further, Fig. 8 describes the second configuration that
has been exploited. In this case, anchors (always three)
were deployed so that collinear arrangements could be
found and an optimal coverage of the network could not
be guaranteed. Again, each node was ideally within the
range of communication of each other in order to have a
full connected graph.

5.4 IEKF vs. EKF

Here a comparison of the proposed Interlaced Extended
Kalman Filter (EKF) against a centralized Extended
Kalman Filter (IEKF) is provided.

In regards to the first configuration shown in Fig. 7,
the results of the centralised and distributed algorithms
averaged over 100 trials are collected in Table 2. Here a
synoptic comparison between the two approaches can be
found. According to the accuracy of available data, both
algorithms are able to localise all nodes within the network
with similar performances.

The similarity of performances can be related to the
good coverage of the network provided by this anchors de-
ployment. In fact, such a deployment is able to make up
the lack of knowledge for the decentralised algorithm with
a more significant set of data.

As one can expected, EKF performs slightly better, es-
pecially in terms of minimum, maximum and average error.

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

1

2

3

4

5

6

7

8

9

10

[m]

[m
]

Figure 8: Second configuration for the network deploy-
ment: anchors (1-3) as well as nodes to be localized (4-10)
were almost randomly arranged.

Table 2: Statistical analysis for the first configuration: in-
dexes of quality.

Conf. 1 EKF IEKF
Max Error [m] 0.1104 0.1490
Min Error [m] 0.0132 0.0172

Mean Error [m] 0.0619 0.0715
Converg. Rate 39 28

% Failure 0 0

This behaviour can be easily explained with the different
amount of data available for the two algorithms as well
as with the more complete interpretation of data typical
of a centralised approach, that takes advantage from the
complete knowledge of cross-correlation terms. The main-
tenance of these terms increase the convergence rate of the
EKF that results slower than the one of the IEKF.

From a complexity point of view, as explained in Sec. 3.3,
the IEKF presents a reduced memory occupancy. Due to
the small number of nodes involved in the localisation pro-
cess, the differences on the computational load cannot be
appreciated, as a full update of centralised algorithm takes
more or less the same time of a full update of IEKF, as re-
ported in Table 3. It should be noticed, however, that
the IEKF update can be split in ni smaller updates run-
ning independently on different processors, while the same
parallelism cannot be achieved by EKF.
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Table 3: Full update time over an Intel R© Pentium M 725
(1.6GHz)

Conf. EKF IEKF
[s] [s]

1 0.0024 0.0021
2 0.0048 0.0027

Table 4: Statistical analysis for the second configuration:
indexes of quality.

Conf. 2 EKF IEKF
Max Error [m] 0.1522 0.3153
Min Error [m] 0.0301 0.0314

Mean Error [m] 0.0786 0.1176
Converg. Rate 35 22

% Failure 1 2

The results obtained using the second configuration are
summarised in Table 4.

This table collects the indexes of qualities for this exper-
iment. In this case, in which anchors were deployed so that
collinear arrangements were possible and a complete cov-
erage of the network were not guaranteed, some differences
between the two algorithms can be noticed. In particular,
while the centralised algorithm is able to localise all nodes,
the decentralised one does not provide a good estimation
for node 4. This can be explained with the fact that node 4
is on the border of the network. As a consequence, having
data coming only from one side, its estimation is more sus-
ceptible to biases. Note also that such anchors deployment
implies a limited percentage of failures.

From a computational point of view, it can be notice
from Table 3 that the execution time of the EKF update
grows exponentially, as the number of nodes increases.

5.5 IEKF vs. MLE

Here a comparison of the proposed Interlaced Ex-
tended Kalman Filter against the centralized Maximum-
Likelihood Estimator (MLE) proposed in Patwari et al.
(2003) is provided. Let’s note that, in order to use the
software provided by the authors of Patwari et al. (2003),
the real data collected by Motes needed to be adjusted. In
detail, all missing observations have been replaced with a
reliable estimation of the real distance as the provided code
did not take into account failure in the observing process.

6 CONCLUSIONS

In this paper a decentralised Interlaced Extended Kalman
Filter to solve the localisation problem in Sensor Networks
has been proposed. The algorithm, working in a decen-

Table 5: Statistical analysis for the first configuration: in-
dexes of quality.

Conf. 1 MLE IEKF
Max Error [m] 0.1171 0.1490
Min Error [m] 0.0540 0.0172

Mean Error [m] 0.0805 0.0715

Table 6: Statistical analysis for the second configuration:
indexes of quality.

Conf. 2 MLE IEKF
Max Error [m] 0.2256 0.3153
Min Error [m] 0.0568 0.0314

Mean Error [m] 0.1041 0.1176

tralised fashion, provides an accurate estimation with an
acceptable computational complexity. Several experiments
have been executed in order to prove its effectiveness. A
comparison with a centralised version of the Extended
Kalman Filter has been provided and typical behaviours
for both algorithms, centralised and decentralised, have
been shown. Furthermore, a statistical analyses over 100
trials for each configuration has been performed to validate
the robustness of the decentralised IEKF.

According to the experimental results, the centralised
EKF performs, in the average, slightly better. This be-
haviour can be related to the more complete interpreta-
tion of data given by a centralised approach. However,
the decentralised IEKF gives similar results with a signif-
icant reduction of the computational complexity. There-
fore, the Interlaced Extended Kalman Filter, working in a
decentralised fashion, turns out to be a robust as well as a
flexible framework, suitable to the collaborative processing
paradigm typical of the sensor network philosophy.

Several interesting challenges still remain for future
works. First of all, an analysis to evaluate the tracking
capability of the proposed algorithm, when a target is mov-
ing within the network, will be faced. Successively, these
results will be integrated to face the problem of closing the
control- loop for a robot moving within the networks.
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