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Abstract In this paper the multi-robot localization problem is addressed. A
new framework based on a spatially structured genetic algorithm is proposed.
Collaboration among robots is considered and is limited to the exchange of
sensor data. Additionally, the relative distance and orientation among robots
are assumed to be available. The proposed framework (MR-SSGA) takes
advantage of the cooperation so that the perceptual capability of each robot
is extended. Cooperation can be set-up at any time when robots meet, it is
fully decoupled and does not require robots to stop. Several simulations have
been performed, either considering cooperation activated or not, in order to
emphasize the effectiveness of the collaboration strategy.
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1 Introduction

The possibility of using a team of robots cooperating to achieve a goal has
gained great attention in recent years. The reason for this interest comes
from the advantage of having a group of robots cooperating to accomplish a
required task in various application domains.

The reliability of multi-robot systems is higher than single robot systems,
as a team is able to achieve its goal even if a member fails. However, the co-
operation inside a multi-robot system comes with several challenges, mainly
related to the higher order of complexity in the coordination of the group
when compared to single-robot systems.

To achieve cooperation in a robot team, two different approaches can be
adopted, centralized and decentralized. In accordance with the centralized
approach all planning execution and monitoring tasks are performed by a
single control unit. As the computational overhead grows exponentially with
the number of group members, such a scheme can only be applied to small
teams. The disadvantages associated with the centralized approach can be
overcome removing the central processing unit and spreading the decisional
issues over the whole team of robots. This observation leads to decentralized
(and distributed) architectures that make the system modular and robust
[1].

These two approaches have been adopted in literature to solve the lo-
calization problem for multi-robot systems. Localization, i.e., the process of
determining the position and orientation (pose) of a robot within the oper-
ating environment, is critical for high level navigation tasks.

In a centralized fashion, a supervisor collects all the data coming from the
robots and provides an estimate for the poses of the robots in the team. This
approach forces all members to continuously communicate with the super-
visor. In order to maintain the communication, robots need either to move
closely to the supervisor or to implement a mobile ad-hoc network. Therefore
some constraints on the robots mobility have to be imposed to guarantee at
least one communication-path from any robot to the supervisor at each time
instant. The decentralized approach, referred in literature as collaborative or
cooperative localization, assumes that each robot in the workspace uses its
own sensors, exchanges data only with other robots in the neighborhood, and
runs a local algorithm to estimate its own pose.

In [2] the concept of mobile landmark is introduced. The authors consider
a team of robots exploring an unknown environment without any beacon. The
exploration is carried out using the robots themselves as landmarks. Each
vehicle repeats move-and-stop actions and acts as a landmark for the other
robots, while a data fusion algorithm collects data to improve the estimate
of the relative positioning of the robots.

A similar solution is proposed in [3,4] where a new sensing strategy,
named robot tracker, is exploited to improve the accuracy of the pose es-
timation of each robot. The robots explore the environment in teams of two;
each platform is equipped with a robot tracker sensor that reports the rel-
ative position of the other robot. Measurements are used in a particle filter
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to update the poses of the multi-robot system together with the associated
uncertainties.

All the solutions mentioned above suffer from the following limitations:
only one robot is allowed to move at any given time, and the team has to
maintain sensorial contact at all times.

A different collaborative scheme, based on a probabilistic framework, is
presented in [5], where two robots are supposed to navigate in a partially
known environment. At every meeting they stop and improve their localiza-
tion by exchanging their beliefs, i.e. the posterior probability density over the
state space conditioned to measurements. A particle filter is at the base of
the algorithm, giving the possibility to handle a non Gaussian shaped belief,
and achieve localization.

Another promising solution is proposed in [6,7] and reviewed in [8,9],
where a Kalman based algorithm is used to realize collaborative localization.
During the navigation cycle, each robot collects data from its proprioceptive
sensors to perform the prediction step of a Kalman filter while sharing in-
formation from the exteroceptive sensors with the rest of the team during
the update. The Authors introduce a distributed algorithm based on singu-
lar value decomposition of the covariance matrix. Such an algorithm allows
the filter to be decomposed into a number of smaller communicating filters,
one for each robot, processing sensory data collected by its hosts. However,
in order to properly maintain the cross-correlation terms a reliable inter-
robot communication is required. Therefore, its application in a large scale
environment is challenging.

This paper represents an extension of the work proposed in [10]. It is de-
voted to analyze a collaborative procedure for multi-robot localization based
on a spatially structured genetic algorithm [11]. The procedure is fully de-
centralized and considers a group of robots moving in an operating space.
During navigation, each robot computes its own localization and cooperates
with the other robots to reduce its uncertainty. Cooperation, which does
not require robots to stop, is realized in a distributed way by extending the
perceptual capability of each robot.

The paper is organized as follows: in Section 2 a theoretical overview
of spatially structured genetic algorithms and complex networks models is
provided. In Section 3 the multi-robot localization procedure is given in de-
tail. In Section 4 the robot and sensor modeling are given. In Section 5 the
advantages of the collaborative procedure compared with the independent
localization are shown. In Section 6 the proposed localization technique is
validated by comparison with a simple genetic algorithm and a simple col-
laborative particle filter. Finally, in Section 7 conclusions are drawn.

2 Theoretical Background

2.1 Spatially Structured Genetic Algorithms

Genetic Algorithms (GAs) are a family of search techniques inspired by Dar-
win’s Theory of Evolution. These techniques provide approximated solutions
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for problems in which other approaches, e.g., the gradient-based techniques,
cannot be applied because of the high non-linearity of the objective functions.

These algorithms use a population of encoded strings (chromosomes) as
candidate solutions to explore the search space. The candidate’s evaluation is
performed by means of an objective function (fitness function) and improve-
ments at each iteration (epoch) result from the application of probabilistic
transition operators (crossover and mutation) acting onto chromosomes. A
simple genetic algorithm (SGA) usually provides three steps: initialization,
selection and reproduction [12]. Initialization generates a population ran-
domly picking up elements over the whole search space, selection draws an
intermediate population relying on a fitness-based approach, and reproduc-
tion causes the population to evolve combining elements from the interme-
diate population. Usually, crossover picks up two elements and performs a
convex combination of them with probability pχ, while mutation picks up
an element and modifies its chromosome, inversely proportional to its fit-
ness, with probability pµ. This means that some individuals, likely having
high fitness, will be exactly copied in the new population (elitism). For a
comprehensive overview on genetic algorithms the reader is referred to [12].

A spatially structured genetic algorithm (SSGA) is a specialization of a
SGA, where the population is spatially distributed with respect to some dis-
crete topology. If the topology is a network, these methods are also known
as graph based genetic algorithms [13]. Following the latter approach, a pop-
ulation P can be defined through a set V = {v1, . . . , vn} of vertices and an
incidence matrix M = {(i, j) = 1 : ∃ link between i and j} as P:={ V, M}.
According to this structure, selection picks up pairs of vertices which show
a relationship into the incidence matrix M , and reproduction generates new
elements preserving the network topology. A exhaustive treatment of SSGA
can be found in [11].

Therefore, differences between SGA and SSGA are mainly related to the
selection approach: the former performs this step by means of a fitness-based
approach, such as the roulette wheel, whereas the latter exploits the network
topology of the population. In this way topological approaches are able to
capture several phenomena that occur in the evolution of a population, like
the persistency of niches and selection rules based on elective affinity between
individuals.

2.2 Complex Networks

Complex networks are characterized by certain non-trivial topological fea-
tures that do not occur in simple networks. They can be properly applied to
model several natural systems, such as social networks or neural networks,
and artificial systems such as the World-Wide-Web.

Several investigations have been performed by the research community in
order to provide models able to properly describe these topological features.
In particular, three fundamental properties have been recognized: the average
path length, the cluster coefficient and finally the degree distribution. The
average path length L of the network is the mean distance between two nodes,
averaged over all pairs of nodes, where the distance between two nodes is
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Watt-Strogatz Barabasi-Albertµ

Fig. 1 Watt–Strogatz and Barabási–Albert models with 30 nodes

defined as the number of the edge along the shortest path connecting them.
The cluster coefficient C of the network is the average of Ci over all nodes i,
where the coefficient Ci of node i is the average fraction of pairs of neighbors
of the node i that are also neighbors of each other. The degree distribution of
the network is the distribution function P (k) describing the probability that
a randomly selected node has exactly degree k, that is the number of links a
node owns.

By means of these properties, a classification of complex network models
is possible. Among them, the most significant are the scale-free [14] and the
small-world models [15]. The scale-free model, proposed by Barabási-Albert,
is used to describe networks with a power-law degree distribution. Such net-
works, built through preferential attachments, are exploited to describe many
real world network, e.g., the World-Wide-Web or an airline routing map. The
small-world model, introduced by Watts-Strogaz, has its root in social net-
works. In fact, with its high cluster coefficient and its short average path, it
perfectly reflects the dynamics of a circle of acquaintances described by the
famous six degree of separation statement.

Examples of these models are depicted in Fig. 1; a comprehensive overview
on complex network can be found in the [16] and the references therein.

3 Multi-Robot Spatially Structured Genetic Algorithm

The proposed Multi-Robot Spatially Structured Genetic Algorithm (MR-
SSGA)provides a decentralized framework for the multi-robot localization
problem. It takes advantage of the complex network theory for the deploy-
ment of the population. Giving such a structure to the population leads to
several interesting advantages, such as the capability to carry on the multi-
hypothesis paradigm. In this context, a chromosome encodes the state of the
robot, represented through its position and orientation (x, y, θ).

From an algorithmic standpoint, an SSGA reflects the classical SGA
schema with a specialization in regard to the structure of the population.
Specifically, initialization creates a population over a complex network, se-
lection picks up all the pairs of linked elements according to the incidence
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matrix, and reproduction determines which probabilistic transition operator
needs to be applied.
In detail, reproduction comes along with two steps:

• Assignment of a state for each individual,
• Evaluation of a mating rule over each pair.

The state of each element, either HIGH or LOW, is computed by comparison
of its fitness value against the average value over the whole population. As
three different combinations can arise when considering a pair of individuals,
a local mating rule is provided for each of them (Table 1).

Table 1 Mating rules

Node 1 Node 2 Action Basic principles
High High The lower is replaced with Elitism and

the Crossover on the two Crossover
High Low Node 2 is replaced with Elitism and

a Mutation of Node 1 Mutation
Low Low Both self-mutate Mutation

3.1 Independent Evolution

Anytime a robot is moving and no other robot is within its communication
range, the only information available are the data coming from its sensors.
The algorithm proposed in [10] is used to address the independent evolution
of each robot. The idea is to perform a measure of similarity between data
coming from a real robot and the expected one computed for a given hypoth-
esis. In order to achieve that, the following fitness function is exploited for
robot r:

Φr
i (zk, ẑk,i) =

1

L

L
∑

j=1

1√
2πσ

e−(zj

k
−ẑj

k,i)
2
/2σ (1)

where, zk = [z1

k, . . . , zL
k ] represents the sensor data, ẑk,i = [ẑ1

k,i, . . . , ẑ
L
k,i] is

the expected one for the considered hypothesis i and finally σ is a measure
of confidence.

3.2 Cooperative Evolution

The same approach holds when considering multi-robot localization. In this
case, although for each robot a population is initialized and lets evolve inde-
pendently, a collaboration can be set-up any time when robots meet. The key
idea is to integrate the observations coming from the components in such a
way that the sensory system capability of each robot is extended. In order to
achieve that, the relative position and orientation of the robots in the team
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Algorithm 1: The proposed Cooperative SSGA - step k and robot r

Data: Population of size Nr: {Vr = {pi,k}, Mr} i = 1 . . . Nr, Fitness Φi(·)
Result: V = {pi,k+1}

/* Average Fitness Evaluation */

Φ̄ =
∑Nr

j=1
Φj(·)/Nr

/* Incidence Matrix Selection */
for i=1 to Nr do

for j=i to Nr do

if M(i, j) = 1 then

switch Compare({Φi(·)), Φj(·)}, Φ̄) do

case High-High
if {Φi(·)) > {Φj(·)) then

pj,k = Crossover(pi,k, pj,k)
else

pi,k = Crossover(pi,k, pj,k)
end

case High-Low
pj,k = Mutation(pi,k)

case Low-High
pi,k = Mutation(pj,k)

case Low-Low
pi,k = Mutation(pi,k) pj,k = Mutation(pj,k)

end

end

end

end

{pi,k+1} = {pi,k}

are assumed available along with the sensor data, while the fitness function
is augmented in the following way

Φr
i (Zk, Ẑk,i) =

1
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where R is the number of the robot of the team in the viewing area, Ls the
number of sensor of the s–th robot, Zk is the set of real data retrieved by the
robots and Ẑk,i the expected one computed by the robot r for the hypoth-
esis i. The second addendum weights the compliance of the measurement
of the team formation with respect to the formation replicated around the
i-th individual. In this way the localization algorithm results completely dis-
tributed and collaboration is possible even when robots move. Cooperation
turns out to be fundamental in reducing the perceptual aliasing, as the more
data available the higher the probability to converge to a single location. It
is well known that a genetic approach helps to maintain a population of mul-
tiple hypotheses. In particular, SSGA, due to their convergence proprieties,
usually maintain equally probable hypotheses and, in presence of sufficient
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and not ambiguous information, converge to a neighborhood of the solution.
This fast takeover is related to the structure of the space of interactions and
can be exploited monitoring the formation of a single cluster.

4 Robot and Sensor Modeling

The robot pose x can be entirely described on a plane by means of it position
and orientation (x, y, θ). The unicycle model is assumed as the kinematic
model for the robot:

xk = g(xk−1, uk−1, ns,k−1)

= xk−1 +





cos φ̃k−1 0

sin φ̃k−1 0
0 1



uk−1 + ns,k−1 (3)

where uk−1 = (δsk, δφk) is the system input (the vehicle displacement and

the vehicle rotation respectively), φ̃k−1 = φk−1 + δφk−1/2 is the average
robot orientation, and nk−1 is a white zero mean noise.

The robot is assumed to be equipped with 8 laser rangefinders arrayed on
360◦. Given an environment entirely described by a list M of pairs of points,
the related observation model is:

zj,k = h(xk,M, ns,k−1) =
|arl

x
j + brl

y
j + cr|

|ar cos θj + br sin θj |
+ nb,k−1 (4)

where (ar, br, cr) are the coefficients of the r-th segment and (lxj , lyj , θj) is
the configuration of the laser beam detecting the segment considered. Fig. 2
depicts the proposed robot and sensor modeling.

5 On the advantages of Collaborative vs. Independent Evolution

In section 3 the independent evolution technique proposed in [10] for the
autonomous localization has been recalled. Successively, the collaborative
procedure proposed for the multi-robot scenario has been described. In this
section, a qualitative comparison is provided in order to highlight the ad-
vantages introduced by the collaborative procedure against the independent
evolution.

5.1 First environment

The first simulation has been carried out in a simple environment with only
one wall and two landmarks. Due to the particular structure of the environ-
ment, hypotheses cannot be fully distinguished relying only on information
coming from laser rangefinders.

Fig. 3 shows the behavior of the algorithm at three different time-steps
when the collaboration among robots is deactivated. Robots are represented
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Fig. 2 Robot and Sensor Modeling

by triangles and populations are reported as dots with orientation given
by small segments. In (a) each robot recognizes only one landmark, as a
consequence each population tends to dispose along a circle whose radius
is the measured distance. In (b), in reference to robot 1, hypotheses tend
to dispose along a line as soon as the wall is recognized. Specifically, the
shape of this line is given by integrating the observation of the wall with the
observations of the landmark. In (c) the situation after a few iterations is
shown: as predictable, robots cannot fully localize themselves due to the lack
of information available.

Fig. 4 shows the behavior of the algorithm at three different time-steps
when the collaboration among robots is activated. Robots are assumed to be
able to communicate to each other within a range of 5 m. In this case, even
after few steps the situation is less ambiguous (a). In fact, in (b) robots are
already localized but a perceptible uncertainty (underlined by the hypotheses
arrangement) is experienced. In (c), having the cooperation activated long
enough, robots are fully localized proving that cooperation can better exploit
data.

5.2 Second environment

The second simulation has been carried out in a fully symmetrical envi-
ronment. As in the previous environment, information coming only from
rangefinders are not adequate to fully distinguish hypotheses.

Fig. 5 shows the behavior of the algorithm at three different time-steps
when the collaboration among robots is deactivated. At the beginning, as
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Fig. 3 First simulation in indepen-
dent mode: iterations 4 (a), 24 (b)
and 48 (c)
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Fig. 4 First simulation in collabora-
tive mode: iterations 4 (a), 24 (b) and
48 (c)

no prior information are available, hypotheses are uniformly spread over the
whole environment. After, according to data coming from sensors, some re-
gions turn out to be more likely than others. As a result, individuals tend to
cover these areas. However, as expected, robots cannot fully localize them-
selves relying only on the rangefinder data because of the nature of the en-
vironment.

Fig. 6 shows the behavior of the algorithm at some time-steps when the
collaboration among robots is activated. Robots are assumed to be able to
communicate with each other within a range of 5 m. Also in this case, as
no prior information are available at the beginning, hypotheses are spread
uniformly over the whole environment. However, due to the cooperation be-
tween the two robots, a different behavior is experienced. In fact, extending
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the perceptual capability of a robot, a better “sight” of the environment can
be obtained. Therefore, some structural ambiguities can be easily overcome.
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Fig. 7 Third simulation in independent (a) and collaborative (b) mode: iteration
55

5.3 Third environment

The third simulation has been carried out considering three robots. Fig. 7
describes the 55th iteration. In (a) the algorithm behavior when the coop-
eration is deactivated is reported, while in (b) the same situation with the
support of the cooperation is shown. Also in this context, it can be easily
noticed as extending the perceptual capability of a robot improves its local-
ization. In particular, due to the nature of the environment, robots 2 and
3 take advantage of the collaboration to disambiguate their position, while
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robot 1 can localize itself simply exploiting the rangefinder data. Moreover,
the framework allows different perceptual extensions to exist. In fact, while
robot 3 extends its perception using data coming from both robots 1 and
2, these robots exploit only data coming from one robot. Note that, the full
video is available at the web address previously given.

6 Performance Analysis

A statistical analysis has been carried out in order to assess the effectiveness
of the proposed MR-SSGA. Fig. 8 shows the environment exploited for the
analysis. This environment presents several ambiguities due to the perceptual
aliasing of the laser rangefinders and the symmetry of the rooms. In particu-
lar, three robots have been considered and their relative paths are given (dots
represent starting points). Three indexes of quality have been taken into ac-
count to investigate the accuracy of the estimation: minimum, maximum and
average error. The analysis, involving 100 trials for each configuration (size
of the population), has been performed comparing the proposed MR-SSGA
with a simple GA and a collaborative particle filter (PF) algorithm. Table 2
shows the common parameters setting for the algorithms.

0 5 10 15 20 25
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14

16

18

20

[m]

[m
]

Fig. 8 Environment exploited for the analysis. Lines represent the robots’ paths
while dots represent the starting points.

Table 3 summarizes the simulation results: the MR-SSGA shows an accu-
racy of roughly one order of magnitude lower than the other two approaches.
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Table 2 Common Parameters Setting

Parameter Description Value

L No. of Pattern Beams 8
l Beam Range [m] 6

σs Std. Dev. System Model Noise [cm rad/sec] [3 0.2]
σb Std. Dev. Laser Beam Noise [cm] 10
σd Std. Dev. Relative Distance Sensor Noise [cm] 5
σo Std. Dev. Relative Orientation Sensor Noise [rad] 3
V Range of Robot’s Visibility [m] 8

Moreover, Fig. 9 points out the advantages related to the spatially structured
deployment. Indeed, the use of a complex network reduces the jittering of the
error estimation due to the particular topology.

In detail, at the beginning the robots start in three different rooms and
perform a non-collaborative localization that, due to the high symmetry, has
a large error in all the cases. First disambiguation (at about iteration 100,
as shown in Fig.9) occurs when red and yellow robots meet in the corridor
and, exchanging data, better their estimations. It is possible to note that
the genetic approaches are more sensitive to the collaborative exchange of
data, rapidly improving the estimate while the particles filter is less prone to
exploit this situation. The third robot joins the group around iteration 250
and, with the genetic approaches has a very fast convergence to the right
estimate. Not so with the PF, that tends to maintain the previous belief.

Table 3 Autonomous Localization.

Population Size 50 100
Algorithm SSGA GA PF SSGA GA PF
Max Err. 0.054 0.133 0.205 0.021 0.056 0.157
Min Err. 0.012 0.027 0.148 0.010 0.009 0.107

Mean Err. 0.023 0.053 0.178 0.014 0.021 0.133

7 Conclusions

In this paper the multi-robot localization problem is addressed. A new frame-
work based on a spatially structured genetic algorithm is proposed (MR-
SSGA). It takes advantage of the complex network theory for the deployment
of the population. In fact, modeling the search space by means of complex
networks results in a more effective exploration. In addition, giving such a
structure to the population leads to several interesting advantages such as
the capability to create evolutionary niches. As niches are regions where par-
ticular solutions are preserved, a natural way to carry on multi-hypothesis
paradigm is obtained.

This paper enhances the approach proposed in [10] through an extension
for the multi-robot context. Specifically, any time two robots are within their
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range of visibility a collaboration can be set-up. It consists of exchanging sen-
sor data, along with a measure of their relative distance and orientation, in
order to extend the perceptual capability of each robot. As a result, cooper-
ation is fully decoupled and robots are not required to stop while updating
their estimates.

Several simulations have been performed, both considering both cooper-
ation activated and not activated, in order to emphasize the effectiveness of
the collaboration strategy. According to the simulation results, the coopera-
tion helps the localization process, especially when the interaction with the
environment does not provide enough information. Moreover, a comparative
analysis against a simple GA and a simple collaborative PF has been per-
formed. It highlighted the MR-SSGA capability to provide an accuracy of
roughly one order of magnitude better than the other approaches. Future
works are oriented toward a real implementation of the proposed collabora-
tive strategy in order to validate its effectiveness in a real world environment.
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Fig. 9 Comparison of MR-SSGA against a simple GA and a collaborative PF


