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Abstract In this paper, a novel genetic algorithm based on a “collaborative” fitness-

sharing technique to deal with the Multi-Robot Localization problem is proposed. In-

deed, the use of the fitness-sharing is twofold and competitive. It preserves the diversity

among individuals during the space exploration process, thus maintaining evolutionary

niches over time, and reinforces the best hypotheses by means of collaboration among

robots, thus augmenting the selection pressure. Simulations by exploiting the robotics

framework Player/Stage have been performed along with a proper statistical analysis

for performance assessment.
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1 Introduction

The localization problem consists of estimating the pose for a robot moving in an

environment using data coming from sensors. Localization has been recognized as one

of the most important problems in Robotics. In fact, the availability of reliable pose

information turns out to be fundamental to perform almost any task. Moreover, the

interaction of the robot with the environment and the noisy nature of sensor data make

the problem highly complicated.

The emergence of Multi-Robot Systems (MRS) introduces new challenges for the

localization problem. In fact, the inherent collaborative and cooperative nature of these

systems requires new paradigms to be properly exploited. Indeed, frameworks for solv-

ing the localization problem in the multi-robot context might be naively obtained by

extending classical approaches developed for the single robot context, e.g parallelizing

their execution. However, this way the inherent collaborative nature of the system is

completely neglected. Instead, better results can be obtained by taking into account

all the available information.

Multi-Robot Systems can be classified in regards to their architecture into two

categories: centralized and decentralized [Cao et al(1997)]. Centralized architectures

are characterized by a single control robot (leader) that is in charge of organizing the
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activities of the other robots. The leader takes part in the decision process for the

whole team, while the other members act according to the dispositions of the leader.

Conversely, decentralized architectures are characterized by “self-organization”, i.e.,

each robot is autonomous in the decision process with respect to each other. However,

all robots share a common goal and their actions are toward its achievement.

Localization techniques have been developed with respect to these two architec-

tures. In a centralized system, a leader collects data provided by the team and per-

forms the localization process for the whole group. In a decentralized system, each

robot performs its estimation and exchanges data with the other robots to improve

the localization process. Both paradigms present advantages as well as drawbacks.

Normally, the assignment of a task is easier in a centralized system compared to a

distributed one, as the leader is the only one in charge of it. Additionally, centralizing

the computation requires only one robot, or few if redundancy is taken into account,

with suitable hardware capabilities. However, this leads to a lack of robustness as, once

a leader fails, the system becomes unable to accomplish the task. These disadvantages

can be overcome removing the central processing unit and spreading all the decisional

issues over the team. This way, since each robot acts independently, modularity and

robustness are achieved [Parker(2000)]. Obviously, suitable hardware capabilities for

all robots are required in this case.

Moreover, in a centralized fashion, a supervisor collects all the data coming from

the robots and provides an estimate of the poses for the robots in the team. This ap-

proach requires all members to continuously communicate with the supervisor. In order

to maintain the communication, robots need either to move closely to the supervisor

or to implement a mobile ad-hoc network. Therefore some constraints on robots mo-

bility have to be defined to guarantee at least one communication-path from any robot

to the supervisor at each time instant. The decentralized approach instead, referred

in literature as collaborative or cooperative localization, assumes that each robot in

the workspace uses its own sensors, exchanges data only with other robots within its

neighborhood, and runs a local algorithm to estimate its own pose.

In this paper, the map-based localization problem for a team of robots equipped

with some exteroceptive sensors, e.g., laser scanners, is addressed. A novel approach

based on a “collaborative” fitness-sharing technique is proposed. The key idea is to use

a fitness-sharing technique for a twofold competitive objective. On one side it helps to

preserve the diversity among individuals during the exploration of the search space,

and thus it allows to maintain evolutionary niches over time. On the other side, it helps

to reinforce the best hypotheses by means of collaboration among robots and therefore

it allows to augment the selection pressure.

This works represents an extension of the idea proposed in [Gasparri et al(2007)],

[Gasparri et al(2009)]. The common baseline is to provide a mechanism for which evolu-

tionary niches representing the most likely hypotheses (robot locations) are maintained

over time. In previous works this was achieved by providing a spatial structure to the

population and constraining the mating over this topology. In this work a niching

method is exploited instead. This results in a more focused and effective action, while

providing at the same time a suitable framework to strengthen the more promising

hypotheses through collaboration.

The rest of the paper is organized as follows. In Section 2 an overview of the state of

the art for the multi-robot localization problem is given. In Section 3 some theoretical

insights about evolutionary computing are given. In Section 4 the proposed “Collab-

orative” Fitness-sharing based genetic algorithm is described. In Section 5 simulation
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results are reported. Finally, in Section 6 conclusions are drawn and future work is

discussed.

1.1 Basic Assumptions

In the rest of the paper, the following assumptions will be taken into account for the

multi-robot system:

• Robots are assumed to have a map of the environment in which they are moving.

• Robots are assumed to be equipped with a laser range-finder and a compass.

• Robots are assumed to be able to compute both relative distance and orientation.

• Robots are assumed to be able to detect and identify each other.

Note that, the capability to compute the relative distance and orientation among

robots along with the capability to detect and identify each other, are quite common

assumptions which can be found in the majority of the works available in the literature,

among the others [Roumeliotis et al(2009)], [Howard (2006)], [Martinelli et al(2005)],

[Fox et al(2000)]. In particular, the data association problem related to the last as-

sumption can be eliminated by properly engineering the team of robots, e.g., equipping

robots with markers. For example, if the robots are using laser range-finders, mutual

detection can be facilitated using retro-reflective targets [Howard et al(2004)], and the

subset of laser rays striking other robots discarded.

2 Related Work

In [Kurazume et al(1994)] the concept of mobile landmark is introduced. The authors

consider a team of robots exploring an unknown environment without any beacon.

The exploration is carried out using the robots themselves as landmarks. Each vehicle

repeats move-and-stop actions and acts as a landmark for the other robots, while a data

fusion algorithm collects data to improve the estimate of the relative positioning of the

robots. According to the authors, this mechanism works well in uncharted environments

since the concept of landmark is intrinsically exploited. In [Rekleitis et al(1997)], the

idea previously introduced is exploited to improve the exploration of an unknown

environment. In detail, underlining how the odometry errors might heavily affect the

mapping of the environment, the authors introduce a mapping technique which acts

also to minimize the effects of inherent navigation. A similar solution is proposed in

[Rekleitis et al(2002),Rekleitis et al(2003)] where a new sensing strategy, named robot

tracker, is exploited to improve the accuracy of the pose estimation of each robot. The

robots explore the environment in teams of two; each platform is equipped with a robot

tracker sensor that reports the relative position of the other robot. Measurements are

used in a particle filter to update the poses of the multi-robot system together with the

associated uncertainties. All the solutions above mentioned suffer from the following

limitations: only one robot is allowed to move at any given time, and the team has to

maintain sensorial contact at all times.

A different collaborative scheme, based on estimation theoretical framework, is

presented in [Fox et al(2000)], where two robots are supposed to navigate in a par-

tially known environment. At every meeting they stop and improve their localization

by exchanging their beliefs, i.e., the posterior probability density over the state space
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conditioned to measurements. A particle filter is at the base of the algorithm, giving

the possibility to handle a non Gaussian shaped belief, and achieve localization. An-

other promising solution is proposed in [Roumeliotis et al(2002),Mourikis et al(2006)]

and reviewed in [Martinelli et al(2005),Martinelli et al(2005)], where a Kalman based

algorithm is used to realize collaborative localization. During the navigation cycle, each

robot collects data from its proprioceptive sensors to perform the prediction step of a

Kalman filter while sharing information from the exteroceptive sensors with the rest

of the team during the update. The authors introduce a distributed algorithm based

on singular value decomposition of the covariance matrix. In this way, the centralized

filter is decomposed into a number of smaller communicating filters, one for each robot.

However, this approach can be applied only if inter-robot communication can be con-

sistently guaranteed. If not, problems related to the maintenance of cross-correlations

terms arise. In [Howard et al(2003)], a distributed approach based on maximum like-

lihood estimation is described. Robots are equipped with sensors that allow them to

measure the relative pose and identity of nearby robots, as well as sensors that al-

low them to measure changes in their own pose. Therefore, localization is obtained

using only the robots themselves as landmarks. In [Roumeliotis et al(2004)], the au-

thors focus on the problem of examining the effect on localization accuracy of the

number N of participating robots and the accuracy of the sensors employed. In detail,

the improvement in localization accuracy per additional robot as the size of the team

increases is investigated. In [Roumeliotis et al(2009)], a distributed Maximum A Pos-

teriori (MAP) estimator for multi-robot Cooperative Localization (CL) is introduced.

Robots are supposed to be able to uniquely identify other robots in the team and mea-

sure their relative distance and bearing. The proposed algorithm effectively exploit the

computational and storage resources of all robots in the team to reduce the processing

requirements and achieve real-time performance. However, a synchronous communica-

tion among robots must be guaranteed in order to distribute the computation of the

MAP. Indeed, as stated by the authors themselves, this might be hard to achieve in

the case of environments with frequent communication failures.

3 THEORETICAL BACKGROUND

3.1 Genetic Algorithms

Genetic algorithms are a class of research techniques, inspired by Darwin’s Theory of

Evolution, applied in several research fields to solve optimization problems. These al-

gorithms use a population of encoded strings (chromosomes) as candidate solutions

to explore the search space. The candidate’s evaluation is performed by means of an

objective function (fitness function) and improvements at each iteration (epoch) result

from the application of probabilistic transition operators (crossover and mutation)

acting onto chromosomes. A simple genetic algorithm (SGA) usually provides three

steps: initialization, selection and reproduction [Goldberg(1989)]. Initialization gener-

ates a population randomly picking up elements over the whole search space, selection

draws an intermediate population relying on a fitness-based approach and reproduction

causes the population to evolve combining elements from the intermediate population.

Usually, crossover is performed with probability pc, while mutation modifies chromo-

somes with probability pm. This means that some individuals, likely with high fitness,



5

will be exactly copied in the new population. The reader is referred to [Mitchell(1998)]

for a complete overview of genetic algorithms.

3.2 Genetic Algorithms Niching Methods and Fitness-Sharing

A simple genetic algorithm, when dealing with multimodal functions, would converge

to the best peak, whereas, in addition to wanting to know the best solution, one may

be interested in knowing the location of other optima. To overcome these limitations

several techniques relying on the concept of niches have been introduced.

In multimodal GAs, a niche is commonly referred to as the location of each opti-

mum in the search space, the fitness representing the resources of that niche. Niching

methods have been developed to minimize the effect of genetic drift resulting from the

selection operator in the traditional GA in order to allow the parallel investigation

of many solutions in the population. An important number of niching methods have

been reported in the literature, among them fitness-sharing, pre-selection and crowding

[Gao et al(2006)].

In particular, the fitness-sharing technique modifies the search landscape by re-

ducing the payoff in densely-populated regions. It derates each population element’s

fitness by an amount almost equal to the number of similar individuals in the popula-

tion. Typically, the shared fitness fsh,i of an individual i is defined as:

fsh,i =
fi
ni

(1)

where fi is the raw fitness and ni is the niche count given by:

ni =

m
∑

j=1

sh(dij) (2)

where m denotes the population size, dij represents the distance between the individual

i and individual j and sh describes the sharing function. This last term measures

the similarity level between two elements of a population according to a threshold of

dissimilarity σs and is defined as follows:

sh(dij) =

{

1−
(

dij

σs

)α

if dij < σs,

0 otherwise
(3)

where α is a constant parameter which regulates the shape of the sharing function

(typically α = 1). The effect of this scheme is to encourage search in unexplored

regions. A complete overview of niching methods can be found in [Mahfoud(1995)].

4 THE PROPOSED ALGORITHM

In the proposed framework, each robot runs an instance of the “Collaborative” Fitness-

Sharing based Genetic Algorithm (CFS-GA). The key idea is to take advantage of

a fitness-sharing technique for both maintaining evolutionary niches over time and

augmenting the selection pressure of individuals. Indeed, as already pointed out in
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[Gasparri et al(2007)], being a niche a region in which a particular solution is pre-

served, a natural way to carry on multi-hypotheses is thus obtained. On the other

hand, collaboration among robots is exploited in such a way that the selection pres-

sure of individuals is augmented and therefore the survival of the best hypotheses is

enhanced.

Algorithm 1: Genetic Algorithm with shared fitness for robotic localization

Data: Population Pt of size m and respectively fitness Ft at time t; odometric
information ut at time t.

Result: New population of size m Pt+1 and new fitness Ft+1 at time (t + 1)

/* Kinematic Evolution */

P̃t+1 = f(Pt, ut);

/* Shared Fitness Computation */

SF = sharedFitness(P̃t+1, σs, α);

/* Collaborative Localization (if any) */
if Neigh(ri) 6= ∅ then

/* Data Sharing */

foreach rj ∈ Neigh(ri) do

Pv ← Data(rj ) ; // Virtual Population

end

/* Hypotheses Reinforcement */

SF = updateSharedFit(P̃t+1, Pv , SF );
end

/* Best Individuals */

Pb = bestSel(P̃t+1, F, pb);

/* Random Population */

Pr = randPop(pr);

/* Tournament Selection */

Pp = selection(P̃t+1, SF, ps);

/* Crossover */

Pc = crossover(Pp, pc);

/* Mutation */

Pg = mutation(Pc, pm) ;

/* New Population */

Pt+1 = {Pb ∪ Pr ∪ Pg};

/* Update Fitness */

Ft+1 = fitness(Pt+1);

4.1 Autonomous Localization

In the robotics context, a chromosome encodes the full state of the robot p = (x, y, θ),

where (x, y) represent the robot cartesian coordinates on a plane, while θ is its heading

direction. In addition, the fitness function is defined as a pattern function giving a
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measure of the similarity between two vectors, as follows:

f(zk, ẑk) =
1

L

L
∑

i=1

1√
2πσ

e
−(zi

k
−ẑi

k
)2

2σ2 (4)

where, L is the number of laser beams, zk represents the sensor data, ẑk is the expected

one for the considered hypothesis and finally σ is a measure of confidence related to

the sensor data noise.

The proposed algorithm for autonomous localization works as follows: at each iter-

ation k, a given robot i performs two steps: kinematics update and population update.

The kinematics update is carried out by applying the current proprioceptive infor-

mation, i.e., odometric information, to the kinematics model (the unicycle mode in the

proposed implementation) for each individual of the population.

The population update is achieved by collecting data coming from exteroceptive

sensors and then performing the evolutionary step. In order to achieve that, the raw

fitness and the shared fitness must be computed. In particular, the raw fitness is used

to identify the best individuals to be preserved (elitism) and the remaining individu-

als to be replaced (epoch evolution). Regarding the epoch evolution, an intermediate

population is built by applying the tournament selection (with tournament size equals

to 2) over the shared fitness [Miller et al(1995)]. New offspring are then obtained by

applying the probabilistic transition operators crossover and mutation over this pop-

ulation. In the proposed implementation, crossover simply produces an offspring by

combining the parents’ chromosomes, and mutation produces an offspring by modify-

ing some genes of a parent’s chromosome. Finally, once the new population is built,

the best individual describing the most likely robot pose is selected according to the

raw fitness value multiplied by an aging factor (memory effect) which reduces the chat-

tering phenomenon of the best individual selection over time (due to the sensitivity of

the algorithm toward the noise affecting the measurements).

4.2 Collaborative Localization

Collaboration among robots is available each time two or more robots are both in their

range of communication (cr) and in line of sight. Collaboration is achieved by exchang-

ing relative distance and orientation coming from sensors affected by noise along with

a portion of the populations for which some particular conditions are satisfied. Note

that, the assumption of being in line of sight is strictly related to the particular sensor

equipment given in Subsection 1.1. Generally speaking , the proposed collaborative

technique requires a couple of robots to be able to compute both relative distance and

orientation among each other. Therefore, any sensing modality, for instance RF along

with compass, which is able to provide this kind of information would be enough. In the

proposed simulation for sake of simplicity we have considered the line-of-sight which

allows a couple of robots with a laser range-finder to easily compute the inter-distance

among each other, while the relative orientation is worked out by means of compass

data.

Let us assume two robots, respectively r1 and r2, to be in their range of com-

munication and line of sight. Now, without any loss of generality let us consider the

collaboration from the point of view of robot r1 as the same holds for robot r2 (in a



8

similar way). At each iteration k, robot r1 first collects data coming from the exterocep-

tive sensors in order to compute the fitness (both raw and shared) for its populations,

successively it looks for neighboring robots to share data with. In this case robot r2 is

available, and then relative position and orientation coming from sensors affected by

noise are exchanged along with a portion of the population for which the raw fitness

value is greater than the average value of the whole population. This information will

be exploited remotely by robot r1 to augment the selection pressure and support the

best hypotheses. In order to achieve that, a “virtual” population is built by robot r1
first by collecting all the selected populations coming from the other robots together

(in this case only data coming from robot r2 is supposed to be available), and then by

applying to them a roto-translation depending on the:

P
(1)
v =

⋃

i∈N1

R(P
(i)
b

,∆p,o(r1, ri)) (5)

where P
(1)
v denotes the “virtual” population of the robot r1, N1 is the detected neigh-

borhood for the robot r1, R is the roto-translation operator, P
(i)
b

is the portion of

population sent by the i-th neighbor and ∆p,o(r1, ri) represent the relative position

and orientation between the robots r1 and ri . This “virtual” population describes the

most likely areas where the local robot might be located from the other robots point

of view. Indeed, this information can be exploited to strengthen local best hypotheses.

This is done, by computing “virtual” niches nv,i around local hypotheses as follows:

n
(1)
v,i =

mv
∑

j=1

sh(dij) (6)

where n
(1)
v,i is the “virtual” niche count around the i-th individual of robot r1, i is the

index of the i-th local hypothesis, j is the index of the j-th individual of the virtual

population andmv is the size of the virtual population. As a result, the local hypothesis

i is strengthened as follows:

f̃sh,i = fsh,i · nv,i (7)

Note that the search landscape is now affected in the opposite way, i.e., by augment-

ing the payoff in densely-populated regions. This increases each population element’s

fitness by an amount almost equal to the number of similar individuals in the “vir-

tual” population. Indeed, this can be thought as a consensus-like approach where the

information coming from other robots is taken as a “suggestion” in order to either give

value to or diminish the confidence of local hypothesis. In the case such a suggestion is

correct, this collaboration might significantly speed-up the localization process for the

local robot. Conversely, if the local robot is already well-localized, a wrong suggestion

would eventually bring ambiguity by strengthening misleading hypothesis for a few

iterations, while if the local robot does not have any clue about its location, wrong

information does not make it any worse.

4.3 Complexity Analysis

In order to determine the computational complexity of the proposed CFS-GA running

onboard a single robot with a population of m individuals, the following main functions



9

are analyzed: Fitness, Shared Fitness, Data Sharing, Shared Fitness Update, Selection,

Crossover and Mutation.

The computation of the raw fitness function is achieved by computing the differ-

ence between the real robot measurements and the measurements estimated by each

individual. Assuming the number of beams to be L, the overall complexity is O(m ·L)
The evaluation of the shared fitness requires to calculate the distance among all the

individuals of the population, to compute a niche count for each individual and to

perform a division between the raw fitness and the related niche count. The dominant

operation is the computation of the distance among the individuals and therefore the

complexity is O(m2). The data-sharing operation involves the exchange of both rela-

tive distance and orientation along with the portion of the population for which the

raw fitness values is greater than the average value over the whole population. The

dominant operation is the comparison operation for which the complexity is O(m).

The update of the shared-fitness involves the computation of the distance between the

m individuals of the local population (regarding the robot in analysis) and the mv

individuals of the virtual population (obtained by putting together the data collected

from the neighboring robots). The dominant operation is again the distance and, in

this case, the related complexity is O(m ·mv). The selection process is implemented by

exploiting the “Tournament Selection” with tournament size equals to 2, and its com-

plexity is O(m). Both the crossover and mutation operators have a constant complexity

when applied to a single individual, therefore for the whole population the complexity

is O(m) each. As a result, putting together all the single pieces, the overall compu-

tational complexity of the algorithm running onboard each single robot turns out to

be max{O(m2), O(m ·mv)}. In particular, it should be noticed how the size of the

neighborhood of a robot affects the overall computational complexity of the algorithm.

In fact, as it can been seen in eq. (5), for each robot the size of the virtual population

grows proportionally with the number of its neighbors and so does the complexity of

the virtual niches computation. Indeed, this represents a bottleneck for the use of the

proposed collaborative localization technique.

5 SIMULATION RESULTS

The proposed algorithm has been throughly investigated by exploiting the robotics

simulation framework Player/Stage [Gerkey et al(2003)]. It consists of a set of tools

for multi-robot and distributed sensor systems. Briefly speaking, Player provides a

network interface to a variety of robot and sensor hardware. Player’s client/server

model allows robot control programs to be written in any programming language and to

run on any computer with a network connection to the robot. Player supports multiple

concurrent client connections to devices, creating new possibilities for distributed and

collaborative sensing and control. On the other side, Stage simulates a population

of mobile robots moving in and sensing a two-dimensional bitmapped environment.

Various sensor models are provided, including sonar, scanning laser rangefinder, pan-

tilt-zoom camera with color blob detection and odometry. Stage devices present a

standard Player interface so few or no changes are required to move between simulation

and hardware.

Three different scenarios were considered for performance assessment. In the first

scenario, the capability of maintaining multi-hypothesis over time was investigated.

In the second scenario, the autonomous localization along with the kidnapped robot
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Start

Goal

Fig. 1 First scenario. Robot’s path from the start point (S) to the goal (G).

Fig. 2 Second scenario. Autonomous Localization with Kidnap. Robot’s path from start point
(S) to kidnap point (K) and from restart point (R) to goal (G).
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Fig. 3 Third scenario. Collaborative Localization. Robots’ path from start point (S) to goal
(G). Communication constrained by range of visibility and line of sight.

problem [Engelson et al(1992)] was investigated. In the third scenario, the advantages

introduced by the collaborative strategy were investigated. The environment shown in

Fig. 1 was exploited for the first analysis, while Fig. 2 describes the environment ex-

ploited for the second scenario and finally Fig. 3 depicts the environment that was used

for the third case. All those scenarios represent a typical indoor, office-like environment.

In particular, the proposed CFS-GA has been compared against:

• the “Adaptive Monte Carlo Localization algorithm” (AMCL) proposed in [Fox(2003)]

(already available in the Player/Stage framework),

• the “Differential Evolution” algorithm (DE) proposed in [Ghidary et al(2007)],

• the “Particle Swarm Optimization” algorithm (PSO) proposed in [Ghidary et al(2007)],

• the “Spatially Structures Genetic algorithm” (SSGA) proposed in [Gasparri et al(2007)].

A set of 100 independent runs was executed for each scenario, and average values

were computed. Specifically, at each iteration of a given trial, a pose error was computed

(using the Euclidian metric) with respect to the best hypothesis. Note that, the initial

population was always drawn from a random uniform distribution of individuals over

the whole environment. Regarding the noise affecting both the proprioceptive and

exteroceptive simulated sensors measurements, gaussian noises with zero means and

covariances Qm, Ql, Qrd, Qro respectively for the odometric measurements, for the

laser scanner measurements, and for the relative distance and orientation measurements

have been considered. Table 1 describes the parameters setting adopted for simulations.
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Table 1 Simulation Setting

Parameter Description SFGA

m Population Size 300
L No. of Pattern Beams 18
l Beam Range [m] 8
σ Confidence Measure [m] 0.5
pb Best Individuals Percentage [%] 80
ps Selected Individuals Percentage [%] 20
pr Random Individuals Percentage [%] 5
T Tournament Size 2
pc Crossover Probability [%] 80
pm Mutation Probability [%] 10
σs Dissimilarity Threshold [% size(Env)] 5
α Shape Parameter 1
cr Communication Range [m] 4
Qm Odometry Noise Var. [m/s, rad/s] [0.05, 0.1]
Ql Laser Noise Var. [m] 0.1
Qrd Rel. Distance Noise Var. [m] 0.2
Qro Rel. Orientation Noise Var. [rad] 0.1

5.1 First Scenario

Fig. 4 shows an example of localization behavior of the proposed algorithm in a squared,

fully symmetric room using only laser range-finders data where each red segment rep-

resents a single individual belonging to the population. Note that, only the first half

of the entire path is shown because the behavior of the algorithm does not change

significantly. In such a scenario, the uncertainty associated with the robot location is

remarkably high because of the symmetry of the environment. In particular, when a

robot is near to a perimetrical wall, the actual pose and other three poses nearby the

remaining walls have roughly the same fitness value. Nevertheless, CFS-GA showed

its ability to face this problem keeping track of the most likely hypotheses (grouped

within niches) over time, e.g., Fig 4-b), Fig 4-c). Furthermore, when a robot performs

a rotation, the uncertainty, due to the noise associated with the odometry, causes the

algorithm to spread the population on a larger portion of the map. However, this does

not significantly affect the convergence of the algorithm and the multi-hypothesis ben-

efits are clearly visible, e.g., Fig 4-a), Fig 4-d). Note that, the problem of selecting the

correct hypothesis among equiprobable individuals belonging to different niches could

be overcome with the employment of the compass.

5.2 Second Scenario

In this scenario, the autonomous localization along with the capability to detect a

kidnap have been investigated.

Fig. 5 shows the localization error averaged over 100 trials for the comparison

against the AMCL, where the CFS-GA was run with a population of 300 individuals

and the AMCL was initialized with 10000 particles (adaptive population ranging from

10000 to 1000 particles). In, detail the solid(blue) line describes the localization error

for the proposed CFS-GA, while the dashed (red) line is the localization error for

the AMCL. According to the obtained results, the two algorithms perform similarly
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a) b)

c) d)

Fig. 4 First scenario. Symmetric squared environment. Red segments are the individuals
belonging to the population.

in terms of accuracy until the kidnap happens. In particular, it can be noticed from

the subplot in the nested box (a), that the AMCL converges more quickly to the

correct robot location, while the proposed CFS-GA takes a little bit longer. This can

be explained by the tendency of the CFS-GA to maintain several hypotheses over

time (for global localization purposes) which leads to a longer time before to trust the

correct hypothesis. On the other hand, this capability to maintain several hypothesis

over time turns out to be crucial when the kidnap happens. In fact, the CFS-GA

always detect the kidnap event and properly recovers the robot location due to the

tendency to continuously explore new locations, even when the correct robot location

is being tracked. Conversely, the AMCL, which simply adds a number of randomly

placed samples at every time instant as detailed in [Thrun et al(2005)], often fails to

re-locate the robot.

Fig. 6 shows the localization error averaged over 100 trials for the comparison

against the DE, where both the CFS-GA and the DE were run with a population of

300 individuals. In, detail the solid(blue) line describes the localization error for the

proposed CFS-GA, while the dashed (red) line is the localization error for the DE.
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According to the obtained results, the proposed CFS-GA always outperforms the DE

algorithm, which has proven to suffer from a high fluctuation of the best solution.

We believe this might be related to the random component of the new individuals

generation process which involves the best existing individual and two random ones

[Ghidary et al(2007)]. On the other side, we also believe that this random component

explains the capability of the DE algorithm to recover from the kidnap problem, though

a very slow converge time can be noticed.

Fig. 7 shows the localization error averaged over 100 trials for the comparison

against the PSO, where the CFS-GA was run with a population of 300 individuals and

the PSO with a population of 3000 particles . In, detail the solid(blue) line describes

the localization error for the proposed CFS-GA, while the dashed (red) line is the

localization error for the PSO. According to the obtained results, the PSO algorithm

turned out to be very inadequate to deal with the global localization problem: the

localization error, as shown in the nested box, was always above the threshold fixed

at 20 cm, and the algorithm has proven to fail to detect and recover from the kidnap

problem. We believe this might be due to the incapability of the PSO algorithm to

carry on the multi-hypothesis over time. Indeed, this aspect turns out to be crucial

anytime a robot moves within an environment with structural symmetries, as shown

in Fig. 1.

Fig. 8 shows the localization error averaged over 100 trials for the comparison

against the SSGA, where both the CFS-GA and the SSGA were run with a population

of 300 individuals. In, detail the solid(blue) line describes the localization error for the

proposed CFS-GA, while the dashed (red) line is the localization error for the SSGA.

According to the obtained results, the two algorithms show similar performances. How-

ever, the SSGA is weakened by the requirement of an additional kidnap sensing strategy

which might fail to recognize the kidnap event. Furthermore, the CF-SGA provides a

more accurate localization compared to the SSGA proving to be a more focused and

effective localization strategy.
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Fig. 5 First scenario. Autonomous Localization with Kidnap. Solid (blue) line: CFS-GA Lo-
calization Error. Dashed (red) line: AMCL Localization Error.
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Fig. 6 First scenario. Autonomous Localization with Kidnap. Solid (blue) line: CFS-GA Lo-
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Fig. 7 First scenario. Autonomous Localization with Kidnap. Solid (blue) line: CFS-GA Lo-
calization Error. Dashed (red) line: PSO Localization Error.

5.3 Third Scenario

Fig. 9 shows the localization error averaged over 100 trials for the second scenario. In

particular, Fig. 9-(a) and Fig. 9-(b) show respectively the results obtained for the pro-

posed CFS-GA with or without collaboration among robots. According to the results

obtained for the previous scenario, the autonomous localization already performs sat-

isfactorily on its own. For this reason, robots have been purposely placed in the middle

of three different corridors where laser data are temporarily partially useless to make

the localization problem particularly difficult. Indeed, this would help to better high-

light the contribution coming from collaboration. Obviously, the collaboration cannot
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Fig. 8 First scenario. Autonomous Localization with Kidnap. Solid (blue) line: CFS-GA Lo-
calization Error. Dashed (red) line: SSGA Localization Error.

improve the accuracy of estimation, i.e., the average localization error after the con-

vergence of the algorithm is roughly the same in both cases. Nonetheless, a significant

speed up of the algorithm convergence can be noticed. Indeed, while the autonomous

localization requires almost 300 iterations for all robots in order to settle around a

value of 15cm, the same is obtained by the collaborative localization after only roughly

100 iterations. This can be explained by the fact that, any time two robots meet, the

way in which they cooperate allows them to strengthen the more likely hypotheses by

computing the virtual niches which affect the landscape by augmenting the pay-off in

densely populated areas. However, it should be pointed out that according to the sim-

ulation results, the speed-up on the convergence time becomes less and less significant

by increasing the size of the neighborhood.

5.4 Parameters Tuning

It is well-known that a critical point for a genetic algorithm is the tuning of the parame-

ters [Goldberg(1989)]. Indeed, this can heavily affects the effectiveness of the algorithm

itself [Nannen et al(2008)]. For this reasons several approach to provide self-tuning ca-

pabilities have been investigated [Yuan et al(2005)], [Perez et al(2008)]. As far as the

localization problem is concerned, two different kinds of parameters can be recog-

nized: hardware-depended and algorithm-depended. Hardware-depended parameters

are mainly related to the sensors equipment. Hence, they can be properly tuned ac-

cording to the particular robotic platform, e.g., σ given in eq. (4) which represents

a measure of confidence related to the sensor data noise can be chosen with respect

to the resolution of the laser range-finders. Algorithm-depended parameters must be

tuned by simulations instead. To this end, several simulations have been carried out

by ranging the parameters to find out the proper setting. The main concern was re-

lated to the robustness of these parameters with respect to environmental variations.

However, according to our experience, only the dissimilarity threshold α has shown

an environment dependency (experimentally validated to be set roughly to 5% of the
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Fig. 9 Second scenario. Collaborative localization against autonomous localization. Plot lines’
colors match robots’ paths color.

environmental size), while the other parameters, e.g, crossover, mutation, tournament

size and, elitism, turned out to be robust against environmental variations.

6 CONCLUSIONS AND FUTURE WORK

In this paper, a novel genetic algorithm based on a “Collaborative” Fitness-Sharing

technique to deal with the Multi-Robot Localization problem has been proposed.

The key idea is to use a fitness-sharing technique for a twofold competitive objec-

tive. On one side this is used to preserve the diversity among individuals during the

exploration of the search space, and thus it allows to maintain evolutionary niches over
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time. On the other side, this is exploited to reinforce the best hypotheses by means of

collaboration among robots and therefore it allows to augment the selection pressure.

This works represents an extension of the idea proposed in [Gasparri et al(2007)].

The common baseline is to provide a mechanism for which evolutionary niches rep-

resenting the most likely hypotheses (robot locations) are maintained over time. In

previous works this was achieved by providing a spatial structure to the population

and constraining the mating over this topology. In this work a niching method has been

exploited. This results in a more focused and effective action, while providing at the

same time a suitable framework to strengthen the more promising hypotheses through

collaboration.

Several simulations by exploiting the robotics simulation framework Player/Stage

have been performed for performance assessment. According to the simulation results,

the proposed CFS-GA seems to be a promising technique for both autonomous local-

ization and collaborative multi-robot localization.

Interesting challenges still remain for future work. First, a real implementation

in order to investigate the effectiveness of the proposed CFS-GA in a real context is

currently under study. In addition, an investigation to bring this idea into a probabilistic

context will be investigated. This way a major shortcoming of this approach, i.e.,

inability of providing a measure of uncertainty of the estimation, would be overcome.
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