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Abstract

Localization, i.e., estimating a robot pose relative to a map of an
environment, is one of the most relevant problems in mobile robotics.
The research community has devoted a big effort to provide solutions
for the localization problem. Several methodologies have been proposed,
among them the Kalman filter and Monte Carlo Localization filters. In
this paper, the Clustered Evolutionary Monte Carlo filter (CE-MCL) is
presented. This algorithm, taking advantage of an evolutionary approach
along with a clusterization method, is able to overcome classical MCL
filter drawbacks. Exhaustive experiments, carried on the robot ATRV-
Jr manufactured by iRobot, are shown to prove the effectiveness of the
proposed CE-MCL filter.

Keywords Robot localization, Monte Carlo Integration Methods, Genetic
Algorithms, Clustering.

1 Introduction

In mobile robotics, one of the most important goal is to realize the complete
autonomy of the robot. The availability of reliable pose information is funda-
mental to achieve such autonomy.

The localization problem aims to estimate the robot’s pose in an environ-
ment, using data coming from sensors. The interaction between the robot and
the environment, along with the presence of noisy sensors readings make the
problem even more difficult.

The majority of works in literature relies on the probabilistic framework.
The idea underlining such approaches is to recursively maintain a probability
distribution, called belief, over all poses (state space points) in the environment.

Initially, the research community has been oriented toward the position
tracking problem, successively other problems, such as the global localization
and the kidnap problem have been investigated as well.
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Position tracking is the problem of estimating the robot’s pose with prior
knowledge about the initial robot’s location. The Kalman filter approach is a
widespread probabilistic framework successfully employed to face this problem
[1].

Kalman based methods represent the belief by means of a Gaussian distri-
bution over the state space of the robot. The mode of the distribution yields
the current robot position, while the variance represents the accuracy of the
estimation.

Gaussian distribution, described by means of only two parameters, has two
important advantages: from a mathematical point of view a discretization of
the state space is no longer required [2], while from a computation standpoint,
an on line implementation can be easily faced [3].

On the other hand, the gaussian assumption limits the Kalman filter usabil-
ity when the ability to represent multi-hypotheses is required, as in the Global

Localization problem.
Global Localization is the problem of estimating the robot’s pose without

benefit of prior knowledge of the initial robot’s location. This lack of knowledge
makes the problem even more difficult as environmental ambiguities have to be
carefully considered in order to successfully determine the initial robot’s pose
from scratch.

To overcome such limitations, several probabilistic global techniques have
been proposed in literature, relaxing Gaussian assumption and introducing dif-
ferent methods for the discretization of the state space.

In [4] a grid based discretization of the state space has been proposed to lo-
calize the robot. The underlining idea is to build a priori global occupancy grid
to compare with a local one, built by the robot as time passes. The advantage
of the grid-based approach is that it approximates a more complex distribution.
However, it suffers from excessive computational overhead [5, 6].

A more promising approach is based on sequential Monte Carlo integration
methods [7]. These methods were first investigated in the early 70’s [8, 9, 10].
However, because of the lack of computational resources available in that pe-
riod, these techniques were neglected till the 90’s when, thanks to a substantial
technological improvement, these methods have been rediscovered.

Nowadays, Monte Carlo techniques are successfully applied to solve estima-
tion problems in several research areas, such as computer vision [11], wireless
telecommunications [12] and mobile robot localization [13].

The key idea is to use a set of random weighted samples to approximate the
probability distribution. The advantage consists in the possibility to represent a
large number of probability distributions. Furthermore, the higher the number
of particles used, the better the approximation obtained.

However, Monte Carlo integration methods suffer from degeneracy problem,
i.e., the problem of having most of the particles with a negligible weight after
few iterations [14].

This problem turns out to be critical when using Monte Carlo integration
methods to deal with the kidnap problem, i.e. the problem of having new data
that force the estimation of an already localized robot at a completely different
position.

In order to avoid the degeneracy, several approaches have been proposed in
the literature. An easy way to reduce this phenomenon is to use a large number
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of particles, however this approach cannot be applied due to the computational
effort.

A more effective solution is to introduce a different measure of degeneracy in
order to perform a resampling step whenever a significant degeneracy is observed
[15].

Moreover, to further reduce this phenomenon, a suitable candidate of the
importance function has been suggested in [16]. In particular, the best candidate
is the one who minimizes the variance of the importance weights conditioned
upon the data.

Two interesting algorithms have been also proposed in [17] and [18]. These
works extend the classical Monte Carlo integration methods introducing alter-
native techniques to obtain particular properties.

The former introduces the idea of clusters of particles to track multiple dis-
tinct hypotheses, where each cluster is considered as an independent hypothesis
about the robot’s pose. The algorithm works on two different levels: at particle
level, the classical Bayesian formulation is adopted to update an hypothesis,
while at cluster level, the one with the highest probability is used to determine
the robot’s pose. Despite the ability to maintain distinct hypotheses over time,
having a costant number of clusters limits the possibility to solve the kidnap
problem because, as the robot moves, the coverage of the environment is no
longer guaranteed.

The latter introduces an alternative re-sampling schema, based on genetic
algorithms, to mitigate the sample impoverishment problem. The algorithm
is able to maintain the diversity of particles during the resampling process by
means of the crossover genetic operator. However, it has been conceived only
to solve the position tracking problem on a landmark-based framework.

In this paper, an alternative Monte Carlo Filter is proposed. This algo-
rithm, taking advantage of an evolutionary approach along with a clusterization
method is able to solve both the global localization problem and maintain the
multi-hypotheses.

The idea is to exploit a dynamical clustering for a better data-driven explo-
ration of the search space, and apply a local evolutionary approach, within each
subset, for a quicker location of the best solutions. In fact, performing a smart
partition of the search space leads to a more efficient use of the evolutionary
approach. In detail, from a local point of view, performing a research of the best
hypotheses in a subset, results in a faster location of the maxima as well as in
a reduction of the probability to stall in a local solution. Again, from a global
standpoint, having several clusters in which the evolutionary approach can be
run, leads to an implicit parallelization of the exploration. Moreover, the dy-
namical nature of clusters, can guarantee a better coverage of the environment,
allowing at each iteration to focus the attention only where the probability to
find the real robot is higher.

A preliminary analysis of this approach has been accomplished in [19].
The paper is organized as follows. In section 2 an introduction to the basic

concepts exploited in this work is provided. In section 3 the proposed Clustered
Evolutionary Monte Carlo filter (CE-MCL) filter is explained. In section 4 the
experimental results are shown and discussed. Finally, in section 5 conclusions
are presented and future works are proposed.

3



2 Theoretical background

2.1 Probabilistic Framework

A suitable framework for the localization problem can be devised exploiting the
probability theory. From a probabilistic point of view, the robot’s pose can be
described by a probability distribution called belief. As a result, the localization
problem consists of estimating the belief over the state space conditioned on the
data.

A Bayesian framework to estimate this probability distribution, called Marko-

vian Framework, has been introduced in [20]. The key idea is to recursively
compute the belief by means of the Bayes rule as new sensors measurement
comes.

In literature the belief is defined as:

Bel(xk) = p(xk | Dk), x ∈ Ξ, (1)

It represents the probability to have the robot at location xk at time k, given
all the data Dk up the time, where Ξ is the set of all poses.

In mobile robotics, data (Dk) can be broken down into control data (Uk)and
perceptual data (Zk). Control data represents the inputs of the system and, as
they are not always known, are retrieved by encoders or other proprioceptive
sensors. Perceptual data represents information about the environment, such
as laser measurements.

As a consequence, prior and posterior belief can be defined as follow:

Bel−(xk) = p(xk | Uk−1, Zk−1). (2)

that it is the belief the robot has got, after the integration of the control data
uk−1, and before it receives the perceptual data zk.

Bel+(xk) = p(xk | Uk−1, Zk). (3)

that is the belief the robot has got once the perceptual data zk has been
integrated.

Regarding to the integration data, several considerations need to be made:

i) Using the Total Probability Theorem the Bel−(xk) can be rewritten as:

Bel−(xk) =

∫

Ξ

p(xk | xk−1, Uk−1, Zk−1)× (4)

p(xk−1 | Uk−1, Zk−1)dxk−1.

The equation states that the prior belief of being in state xk is the sum of
the probabilities of coming from state xk−1 to state xk given all the ear-
lier sensor measurements. The second term of the integral represents the
belief at time (k− 1), as the robot pose at generic step k does not depend
on the action that is performed at the same step. To further simplify the
formulation, the assumption to have a Markov environment can be intro-
duced. The key idea is to consider the past and future data independent,
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with the knowledge of the current state [20]. As a consequence the prior
belief can be written as:

Bel−(xk) =

∫

Ξ

p(xk | xk−1, uk−1)× (5)

Bel+(xk−1)dxk−1.

ii) Using the Bayes rule the posterior can be rewritten as:

Bel+(xk) = p(zk | xk, Uk−1, Zk−1)× (6)

p(xk | Uk−1, Zk−1)

p(zk | Uk−1, Zk−1)

The equation states that the posterior belief is the conditional probability
of observing zk, weighted by the ratio of the prior belief of being in state xk,
Bel−(xk), and the probability of observing measurement zk conditioned
on all information so far. To further simplify the formulation, the Markov

assumption can be adopted again. As a result the posterior belief can be
rewritten as:

Bel+(xk) =
p(zk | xk) Bel−(xk)

p(zk | Uk−1, Zk−1)
(7)

iii) As a combination of the equations mentioned above, the recursive formu-
lation for localization is:

Bel+(xk) = η p(zk | xk)× (8)
∫

Ξ

p(xk | xk−1, uk−1)Bel+(xk−1)dxk−1,

where η represents p(zk | Uk−1, Zk−1) and can be viewed as a normaliza-
tion factor.

As the integrals above are not tractable, several efforts have been devoted
to approximate the state space in order to make the recursive equation above
simple to be computed.

2.2 Monte Carlo Integrations Methods

Monte Carlo integrations methods extend the Markovian framework by means
of a sampling approach to represent the posterior distribution (belief). These
methods have the significant advantage of not being subject to any linearity or
Gaussianity constraints on the model, and they also offer interesting convergence
properties. As a consequence, these methods turn out to be a powerful tool to
deal with the global localization problem.

The Perfect Monte Carlo Sampling draws N independent and identically dis-

tributed random samples {x
(1)
k , . . . , x

(N)
k } according to Bel+(xk). Consequently,

the approximation of the posterior distribution is given by

Bel+(xk) ≈
1

N

N
∑

i=1

δ
x
(i)

k

(xk − x
(i)
k ), (9)

5



where δ
x
(i)

k

(xk − x
(i)
k ) represents the delta-Dirac mass located in x

(i)
k .

However, due to the difficulty of efficiently sampling from the posterior dis-
tribution Bel+(xk) at any sample-time k, a different approach is required.

An alternative solution is the Sequential Importance Sampling approach.
The key idea is of drawing samples from a normalized importance sampling

distribution π(xk | dk) which has a support including that of the posterior belief
Bel+(xk). In this case, the approximation of the posterior is given by

Bel+(xk) ≈

N
∑

i=1

w
(i)
k δ

x
(i)

k

(xk − x
(i)
k ), (10)

where the importance weight is computed as

w
(i)
k = w

(i)
k−1 ·

p(zk | x
(i)
k )Bel−(xk)

π(xk | dk)
. (11)

In mobile robotics, a suitable choice of the importance sampling distribution
π(xk | dk) is the prior distribution Bel−(xk) [21]. With this choice, the impor-
tance weight can be easily computed as:

w
(i)
k = w

(i)
k−1 · p(zk | x

(i)
k ), (12)

and the importance sampling distribution can be written in a recursive fashion:

π(xk | dk) = p(xk | xk−1, uk−1) ·Bel+(xk−1). (13)

Such formulation has the advantage of allowing an on-line evaluation of
the importance weight as long as new data is available; however it causes the
degeneracy problem, i.e. the problem of having most of the samples with a
negligible weight after few iterations. A common approach to overcome this
problem is to provide a resampling step, which aims to replace particles with
small importance weight by means of a suitable strategy.

The algorithm 1 shows a typical implementation schema for a Sequential

Monte Carlo filter with resampling step. The majority of works in literature
relies on this schema, with a specialization for the resampling approach adopted.

2.3 Genetic Algorithms

Genetic Algorithms (GAs) are a class of search methods and computational
models inspired by Darwin’s Theory of Evolution. These algorithms, initially
investigated in [22], use a population to explore the search space, by means of
probabilistic transition operators like crossover and mutation, in order to find
out the element (chromosome) that best fits a given objective function (fitness

function). This approach reflects a possible mathematical model of the nature’s

behavior in which the high adaptability of each creature in its environment is
the result of a long evolutionary process, based on natural selection, mutation,
sexual and asexual reproduction [23].

GAs have been applied in several research areas to solve optimization prob-
lems where the presence of non-differentiable or non-continuous objective func-
tions makes other methodologies almost useless.

A simple genetic algorithm, as it is referred to in [24], can be described as a
sequence of the following steps:
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Algorithm 1: Sequential Monte Carlo Filter

Data: Bel+(xk−1) = {x
(i)
k−1, w

(i)
k−1} , uk−1 , zk

Result: Bel+(xk)

/* Importance Sampling */

Compute π(xk | dk−1) = p(xk | xk−1, uk−1) · Bel+(xk−1)

for i=1 to Ns do

Sample x̃
(i)
k ∼ π(xk | dk−1)

Evaluate w
∗(i)
k = w

∗(i)
k−1 ·

p(zk|x̃
(i)

k
)Bel−(xk)

π(xk|dk−1)

end

/* Normalization */

for i=1 to Ns do w̃
(i)
k =

w
∗(i)

k
∑

Ns

j=1
w

∗(i)

k

Evaluate Neff = 1
∑

Ns

i=1
(w̃

(i)

k
)2

/* Degeneracy Test */

if Neff ≥ Nthres then

{x
(i)
k , w

(i)
k } = {x̃

(i)
k , w̃

(i)
k }

else

/* Resampling */

{x
(i)
k , w

(i)
k } = ResamplingProcedure({x̃

(i)
k , w̃

(i)
k })

end

Bel+(xk) = {x
(i)
k , w

(i)
k }
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• initialization

• generation.

Initialization generates an initial population whose elements are encoded by
means of a fixed length string known in literature as genotype, or alternatively
chromosome. Several strategies have been proposed for the initialization; a
classical one is to randomly draw the population. Afterward, the fitness function
has to be evaluated for each element of the population. The identification of a
suitable objective function, able to give a measure of the goodness of an element,
is usually problem-dependent.

Generation creates a new population through two steps: selection and recom-
bination. Selection draws an intermediate population where the recombination
has to be applied. A common approach is to pick up elements, belonging to the
actual population, proportionate to their fitness. Recombination acts on this in-
termediate population to generate a new one. Probabilistic transition operators
crossover and mutation, are usually applied. In particular, crossover selects two
elements from the intermediate population and creates a new element swapping
a portion of their chromosomes with respect to a crossover point. On the other
hand, mutation selects an element from the intermediate population and creates
a new element modifying some bits of its chromosome.

3 The Clustered Evolutionary Monte Carlo Fil-

ter

The Clustered Evolutionary Monte Carlo filter (CE-MCL) has been conceived
following the classical Sequential Monte Carlo filter schema mentioned above.
The algorithm works on two different levels:

• local level

• global level.

At local level the algorithm finds out local maxima within each cluster,
whereas at global level the best hypothesis is obtained by a comparison among
the optimal solutions provided by each cluster.

In order to realize such behavior, the algorithm introduces two strategies:

• a dynamical clustering at resampling step

• an evolutionary action at each time-step.

3.1 Dynamical Clustering

The dynamical clustering provides a collection of particles subset that represents
the best partition of the environment and where the probability to find out the
real robot location is higher. Cluster identification is performed by means of
the DBscan algorithm, which relies on a density-based notion of clusters [25].
Such algorithm offers several good properties, such as the ability of finding
out clusters of arbitrary shapes, the advantage of collecting the noisy points,
and an acceptable computational complexity. In particular, the possibility of
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collecting all the points belonging to any cluster turns out to be very useful in
this context. In fact, it can be viewed as another mean to improve the diversity
among particles. Moreover, in order to guarantee both a minimal coverage of
the environment and further mitigate the degeneracy problem, a random action
is introduced along with the dynamical clustering at resampling step. Such
action reduces the similarity among particles randomly drawing a percentage of
new samples.

3.2 Evolutionary Action

The evolutionary action, instead, is introduced to quickly find out local max-
ima within each cluster. From a genetic point of view a cluster represents the
population, while the state space vector is the encoding string, e.g. the chro-
mosome. The model of the sensor p(zk | xk) is adopted as fitness function.
This choice makes the local maxima to be prominent candidates to localize the
robot, being the p(zk | xk) part of the importance weight formulation as well.
The evolutionary action is based on the probabilistic operators:

• mutation

• crossover.

Mutation creates a fixed percentage of new particles sampling from a circular
area centered on the selected chromosome (Fig. 1), whose radius is defined as
follow:

ρk =
1

√

w
(i)
k

. (14)

Resampling Radius

Resampling Area

Particle

1

(i)
�ω
k

Figure 1: Choice of resampling area for mutation

The idea of defining the radius as an inverse function of the importance
weight, reflects the consideration that particles, with a considerable importance
weight should be located closer to the real robot than the others. Therefore,
filling this area should be promising for a quicker localization.

On the other hand, crossover creates a fixed percentage of new particles
combining chromosomes belonging to the same cluster. The idea of selecting
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parents within the same subset, avoids unlikely recombination to happen, being
clusters spatially organized.

At the end, the Clustered Evolutionary Monte Carlo Filter, taking advantage
of these strategies, is able to both globally localize the real robot location and
solve the kidnap problem, as well as to maintain the multi-hypotheses.

The algorithm 2 shows a possible implementation schema for The Clustered

Evolutionary Monte Carlo Filter.

3.3 Computational Complexity

In order to evaluate the computational complexity of the algorithm, several
analyses have been performed. A detailed theoretical study has been done
along with an empirical validation of the obtained results. According to such a
study, two different cases have to be taken into account:

• simple step

• resampling occurence.

In the first case, when the resampling is not considered, the complexity of
the algorithm turns out to be O(NsM), where Ns is the number of particles and
M is the number of segments describing the environment. Conversely, when the
resampling occurs, the DBscan effort has to be considered. In this case the
overall complexity of the algorithm is given by max{O(Ns log(Ns)), O(NsM)},
where O(Ns log(Ns)) is the computational load of the DBscan [25]. Two re-
marks are now in order: the first one is that the number of segments (M) is
usually at least one order of magnitude smaller than the number of particles
(Ns); the second is that the resampling step, during a typical execution, takes
less than 10% of the overall number of iterations. Therefore, it is correct to
state that the real complexity that should be considered is the one of the simple
step: O(NsM).

4 Experimental Results

The proposed algorithm has been tested in both simulated context and with
real data in order to validate its capability to deal with the global localization
problem. Several aspects have been thoroughly investigated. Particular atten-
tion has been paid to give evidence of the ability to carry on multi-hypotheses
as well as to prove the ability to re-localize the robot when a kidnap occurs.

Simulated experiments have been performed using a framework developed
under Matlab, which is able to provide a complete virtual environment. Real
experiments have been executed on the mobile platform ATRV-Jr (All Terrain
Robot Vehicle Junior) manufactured by iRobot. It is a skid steering vehicle
mainly designed to operate in outdoor environments. The ATRV-Jr has 4 wheels
differentially driven by 2 DC motors: the motion is achieved by a differential
thrust on the wheel pairs at the opposite sides. The mobile robot is equipped
with 17 sonar rangefinders, a laser scanner ( Sick LMS-220), an inertial plat-
form (Crossbow DMU-6X), and a GPS receiver (Garmin GPS35-HVS). The
sensory system is connected to the ATRV-Jr’s on board PC (Pentium II, 350
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Algorithm 2: Clustered Evolutionary Monte Carlo Filter

Data: Bel+(xk−1) =
⋃Nclust

j=1 {x
(i)
k−1, w

(i)
k−1}j , uk−1 , zk

Result: Bel+(xk)

/* Importance Sampling */

Compute π(xk | dk−1) = p(xk | xk−1, uk−1) · Bel+(xk−1)

for i=1 to Ns do

Sample x̃
(i)
k ∼ π(xk | dk−1)

Evaluate w
∗(i)
k = w

∗(i)
k−1 ·

p(zk|x̃
(i)

k
)Bel−(xk)

π(xk|dk−1)

end

/* Normalization */

for i=1 to Ns do w̃
(i)
k =

w
∗(i)

k
∑

Ns

j=1
w

∗(i)

k

/* Evolutionary Action */

for j=1 to Nclust do

{x̄
(i)
k , w̄

(i)
k }j ←











Mutation({x̃
(i)
k , w̃

(i)
k }j)

Crossover({x̃
(i)
k , w̃

(i)
k }j)

end

Evaluate Neff = 1
∑

Ns

i=1
(w̄

(i)

k
)2

/* Degeneracy Test */

if Neff ≥ Nthres then

[{x
(i)
k , w

(i)
k }j, Nclust] = [{x̄

(i)
k , w̄

(i)
k }j , Nclust]

else

/* Resampling */

/* 1◦ Step: Random action */

{x̂
(i)
k , ŵ

(i)
k } ← Random({x̄

(i)
k , w̄

(i)
k })

/* 2◦ Step: Re-Clustering */

[{x
(i)
k , w

(i)
k }j, Nclust]← DBScan({x̂

(i)
k , ŵ

(i)
k })

end

Bel+(xk) =
⋃Nclust

j=1 {x
(i)
k , w

(i)
k }j ;
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MHz) running Linux, through serial port on a Rockeport multiserial port card.
The robot is delivered with a software development environment called MOBIL-
ITY, which provides full access to the software servers available on the mobile
platform. In particular, each server is assigned to control a specific hardware
component (sensors and actuators). In this way all of them are reachable from
the network exploiting a CORBA interface.

Two different types of analysis have been performed. The first one has
demonstrated the global algorithm aptitude to localize the robot as well as to
carry on multi-hypotheses. The second more specialized analysis has proved the
local algorithm ability to converge within each cluster.

Two indexes of quality have been chosen to evaluate the correctness of the
algorithm: the percentage of estimation failures and the entropy measurement
of the particle set. The first one gives information about the reliability and the
accuracy of the solution, the second one, coming from the information theory

[26], provides a measurement of the uncertainty for a given random, and it is
defined as:

H(χ) =

n
∑

i=1

pi log2(
1

pi

)

where, pi is the probability of the i-th outcome for a given event χ. In this
context, entropy can be properly applied to give an evaluation of the persistence
of the diversity among particles.

For the first analysis, several environments have been taken into account to
investigate each aspect of interest. In particular, a simple rectangular environ-
ment, shown in Fig. 2, has been used to prove the ability of the algorithm to
carry on multi-hypotheses; a complex environment, shown in Fig. 3, has been
exploited to test the algorithm aptitude to solve both the global localization
problem and the kidnap problem; finally, a T-shaped environment, shown in
Fig. 5, containing many glass elements, has been adopted to prove the algo-
rithm robustness.

Fig. 2 shows a typical CE-MCL iteration step for the rectangular environ-
ment. Points (green) represent particles, whereas circles (red) are located at
the center of the mass of each cluster and, segments (blue) describe the mean
orientation for all particles within each cluster. Due to the environmental sym-
metries, at each time-step at least two subset of hypotheses are maintained ,
in particular the ones located at the extreme of a segment splitting the envi-
ronment in two equal parts. Further, such behavior seems to be reasonable as
sensor data support both locations, nothing that the laser beam range is 8 m.

Fig. 3 shows a typical CE-MCL estimation result for the complex environ-
ment previously mentioned. Points (red) represent the most likely hypotheses
at each time step, whereas the line (blue) represents the real robot path. In
particular, S is the robot start point, K is the location at which the robot is
kidnapped, R is the start point after the kidnap and finally, G represents the
goal point of the robot.

The algorithm has been able to find out a rough estimation of the robot
path without any knowledge about the starting robot location. Moreover, Fig.
3 evidences the algorithm’s ability to realize when a kidnap occurs, thus re-
localize the robot. The remaining noisy points, consequence of a temporary bad
estimation, prove the algorithm’s tendency to explore the whole environment as
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Figure 2: Rectangular environment: CE-MCL iteration
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Figure 3: Complex environment: CE-MCL estimation result

well as to carry on the multi-hypotheses at each time step. Further, they might

13



be easily removed, for instance relying on the kinematic model constraints of
the mobile robot.

The algorithm has been runned several times in this environment to estimate
the percentage of failures; the mean value settles around 30%, while the variance
is ±4%.

Fig. 4 shows the measurement of entropy for the experiment mentioned
above. The red line represents the theoretical maximum entropy for the given
set of particles, whereas the blue line describes the entropy during the algorithm
execution, and the black line is its mean value. In order to maintain the diversity
among the particle set, such value should be high. However, the algorithm
should also be able to converge to the real robot location. For the CE-MCL
algorithm, the mean value settles around an intermedian value, giving evidence
of the algorithm’s aptitude to balance both needs.

0 500 1000 1500 2000 2500
2

3

4

5

6

7

8

9

Figure 4: Complex environment: CE-MCL entropy measurement

To evaluate the algorithm robustness, an environment containing many glass
elements and an evident structural ambiguity has been considered. Fig. 5
shows a typical CE-MCL estimation result for such environment. The presence
of structural ambiguities along with the noisiness of laser readings, due to the
nature of glass, make the localization problem more difficult. Despite the fact
that the accuracy of the estimation is lower than the previous experiment, and
the percentage of failures is markedly higher (mean value 40%, variance ±5%)
the algorithm has been able to localize the robot, even under these critical
conditions.

Fig. 6 shows the measurement of entropy for this environment. As in the
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Figure 5: T-shaped environment: CE-MCL estimation result

previous experiment, the value settles around the median value, proving the
algorithm’s ability to maintain the diversity among the particles set.

The second type of analysis has been performed at cluster-level to figure out
the local algorithm’s behavior. Two aspects of interest have been considered to
study the convergence of particles within each cluster: a measure of similarity
and the state variables variance.

Fig. 9 shows a sequence of CE-MCL iterations for an additional regular
environment exploited for such analysis. This sequence of images describes the
algorithm behavior between two resampling steps. In particular, when the first
resampling occurs (a), the algorithm recognizes six clusters (the last one is the
collection of noisy points) with a visible dispersion for the elements within the
environment. The following iterations point out the CE-MCL tendency to cen-
tralize the hypotheses around the center of mass of each cluster. Moreover, after
few time-steps, clusters are coarsely located along a line crossing the corridor.
This deployment underlines the algorithm tendency to maintain only the most
likely hypotheses after a full exploration of the environment.

From a mathematical standpoint, both the state space variables analysis and
the measurement of entropy give evidence of these considerations. Fig. 7 shows
a typical variance trend within a cluster for all three state variables: peaks
indicate the resampling effect, whereas slopes give evidence of the algorithm
aptitude to make particles converge within each cluster. Fig. 8 exhibits a
typical measurement of entropy within a cluster: the trend is similar to the
previous one due to the relationship among these concepts, when restricted to
a single cluster.
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Figure 7: Corridor-like environment: CE-MCL variance

5 Conclusions

In this paper a new Monte Carlo Filter has been proposed to deal with the lo-
calization problem: the Clustered Evolutionary Monte Carlo Filter (CE-MCL).
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Figure 8: Corridor-like environment: CE-MCL entropy measurement

Such algorithm has been conceived to overcome the classical Monte Carlo Filter
drawbacks. This goal has been achieved taking advantage of an evolutionary
approach and a clustering method. In particular, the former has been exploited
to quickly find out local maxima, whereas the latter, being dynamical, helps
to obtain an effective exploration of the environment. The ability to provide a
smart partition set of the research space along with the guarantee to converge
within each subset, make the algorithm able to solve the localization problem
and maintain the multi-hypotheses.

Note that the combined use of cluster+genetic offers several interesting ad-
vantages. At local level, being the size of research space smaller, the localization
of the best solution is faster and the probability to stall on a suboptimal solu-
tion is lower. At global level, being the clustering dynamical and data-driven,
an implicit parallelization of the research is possible and a better coverage of the
environment is obtained, focusing the attention where the probability to find
out the real robot pose is higher.

Exhaustive analyses have been performed on the robot ATRV-Jr manufac-
tured by the IRobot, with the employment of several environments, to prove
the effectiveness of the proposed algorithm. In particular, two different kinds of
experiments have been considered: the first one has proved the algorithm ability
to solve the global localization problem, even when a kidnap occurs; the second
one has given evidence of the algorithm tendency to converge within each clus-
ter and to guarantee an efficient exploration of the environment. Such analyses
have shown the important role of the dynamical spatial clustering to provide an
effective partion of the research space on which apply the evolutionary action.
Therefore, the CE-MCL can find out local-maxima, guarantee a convergence to
the most likely hypotheses, maintain the diversity among particles and localize
the robot.

Some interesting challenges still remain for future works. For instance, an ex-
tension of the CE-MCL for the multi-robot scenario could be devised exploiting
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Figure 9: Corridor-like environment: CE-MCL sequence of iterations

the cluster-based approach to better distinguish hypotheses. From a computa-
tional point of view, a dynamical number of particles could be introduced to

18



reduce the complexity of the algorithm.
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