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A Navigation Architecture for
Ackermann Vehicles in Precision Farming
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Abstract—In this letter, inspired by the needs of the European
H2020 Project PANTHEON1, we propose a full navigation stack
purposely designed for the autonomous navigation of Ackermann
steering vehicles in precision farming settings. The proposed stack
is composed of a local planner and a pose regulation controller,
both implemented in ROS. The local planner generates, in real-
time, optimal trajectories described by a sequence of successive
poses. The planning problem is formulated as a real-time cost-
function minimization problem over a finite time horizon where
the Ackermann kinematics and the presence of obstacles are
encoded as constraints. The control law ensures the convergence
toward each of these poses. To do so, in this paper we propose a
novel non-smooth control law designed to ensure the solvability
of the pose regulation problem for the Ackermann vehicle.
Theoretical characterization of the convergence property of
the proposed pose regulation controller is provided. Numerical
simulations along with real-world experiments are provided to
corroborate the effectiveness of the proposed navigation strategy.

Index Terms—Agricultural Automation, Robotics in Agricul-
ture and Forestry, Motion Control

I. INTRODUCTION

PRECISION Agriculture is a farming management concept
based on observing, measuring and responding to inter

and intra-field variability in crops [1]. Intervariability may
result from a significant number of factors such as weather
variables (temperature, precipitations, relative humidity, etc.),
soil characteristics (texture, depth, nitrogen levels), cropping
practices (till/no-till farming), weeds and diseases, etc.

As pointed out in [2], the availability of autonomous system
architectures gives the opportunity to develop a new range of
flexible agricultural equipment based on small, smart machines
that reduce waste, improve economic viability, reduce environ-
mental impact, and increase food sustainability. As a matter of
fact, there is considerable potential for robotics technology to
provide targeted interventions on different aspects of farming,
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Fig. 1: A farming robot navigating a hazelnut orchard environment.
The field traversing route is represented by the blue solid and the
yellow dotted (the part of the route on the other row) lines.

ranging from selective pesticides spraying to mechanical or
laser-based weed removals. However, to effectively carry out
almost any (farming) task, a robot must guarantee autonomous
and safe navigation of the environment.

The problems of planning and control of ground vehicles
have been widely investigated in the literature, e.g. [3]–[11].

Typical application scenarios include self-driving vehicles
and autonomous racing. In this setting, the majority of the
approaches focus on the trajectory tracking problem. Recent
solutions exploit the predictive control paradigm, where the
control inputs are retrieved through a real-time trajectory op-
timization procedure carried out in a receding horizon manner.
However, these approaches might not be effective in a farming
scenario where the soil terrain is often uneven and, in the
case of orchards, the intra-row space may be narrow leaving
no space to maneuvering errors. In addition, in this specific
scenario, maneuvers are often task-based, meaning that a
vehicle is asked to move from a specific pose configuration
to another one to perform certain agronomic interventions or
to collect data. Therefore, a pose regulation approach seems
more adequate in this setting.

In this work, we propose a full navigation stack for a farm-
ing robot with Ackermann steering kinematics. This research
is motivated by the needs of the European H2020 project
PANTHEON where an autonomous farming robot is required
to navigate within a hazelnut orchard to collect information
and perform agronomic interventions at the resolution of the
single tree (see Figure. 1). To achieve this objective, the pro-
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posed navigation architecture relies on two major components:
i) a local planner and ii) a tailored pose regulation control
law. In particular, the local planner generates, in real-time,
optimal trajectories by taking into account both the Ackermann
kinematics and the obstacles (e.g. trees, rocks, etc.) that might
lie, or dynamically appear, along the route. To do so, the
planning problem is modeled as a cost-function minimization
problem over a finite-time horizon, and by re-planning the
optimal trajectory in a receding horizon fashion. The outcome
of the local planner, i.e., a trajectory described by a sequence
of desired poses, is then fed into a non-smooth control law that
ensures the convergence toward each of these configurations.
This control law, which is inspired by control techniques
originally applied to the unicycle kinematics, has been pur-
posely designed ex novo to solve the pose regulation problem
for vehicles with Ackermann kinematics. A comprehensive
theoretical characterization of the convergence properties of
the pose regulation controller is also provided by resorting to
tools coming from non-smooth theory.

To validate the proposed approach, we report results from
an exhaustive set of experiments on both a real and a simu-
lated farming robot with the same kinematical properties. We
show that the proposed method guarantees accurate and safe
navigation within the target field while keeping the vehicle at a
safe distance from the surrounding obstacles. We also provide
an open-source C++ implementation of the proposed solution
and of the simulated experimental scenario at the following
link:

https://tinyurl.com/s4ofvuz

A. Related Work

The problem of planning and controlling vehicles with
Ackermann steering kinematics has been widely investigated,
especially in the context of self-driving cars and outdoor au-
tonomous robots moving in urban environments [12]. Several
solutions have been proposed and they can be roughly divided
in two categories, non-predictive ( [3], [4], [5], [6], [7]) and
predictive ( [8], [9], [10], [11]).

The formers are not able to plan the motion of the vehicle,
therefore it is necessary to compute the trajectory before
applying the control law. In Zhang et al. [3] the authors
propose a sliding mode control law specifically designed for
second order differential equation models. The effectiveness
of this approach is extensively tested in simulation. A similar
non-linear control law for lateral motion of the vehicle is
proposed in [4]. In this work, the author presents a lateral
control strategy to steer autonomous vehicles using vision.
Such a control law takes into account the vehicle velocity to
adapt the steering control response, making the control strategy
well suited for different speeds.

Franch et al [5] proposes a trajectory controller and a
trajectory generation algorithm for Ackerman vehicles. To
handle the non-linearities of the system model, the trajectory
generation problem is formulated in terms of flat outputs,
making it possible to apply a dynamic linearization, while a
closed-loop control law steers the vehicle along the planned
waypoints.

Differently from non-predictive methods, predictive ap-
proaches are able to plan the optimal trajectory of the vehicle
together with the optimal control inputs by re-planning the
trajectory in a receding horizon fashion.

In Liniger et al. [10], the authors propose two different
control laws. The first employs a path planner and a NMPC
for tracking. The second combines both tasks in a single non-
linear optimization problem. The proposed method is tested
by using a 1:43 scale RC race car, showing high performance
and feasibility. The former controller formulation has been
extended in [8], where the authors present a full stack for
an autonomous race car. In particular, they used a novel
vehicle model that fits well the real system also when driving
slow. They also include actuator dynamics and tire friction
constraints. The system has been tested in different Formula
Student competitions. To handle the unmodeled vehicle dy-
namics, in [9] and [11], the authors proposed a learning-based
controller: the nominal vehicle model is constantly improved
based on sensorial data gathered in real-time and by employing
machine learning methods ( [13]). This leads to reductions of
the lap time up to 10%.

As mentioned in the introduction, these approaches cannot
be used effectively in high-precision agricultural environments.
Trajectory planning and control in the agricultural context have
specific features that make it quite different from the settings
for which the above-mentioned laws have been developed.
Some of the most relevant differences are that: (i) the intra-row
traversing space is narrow leaving little room to maneuvering
errors, and (ii) the soil terrain is usually uneven, leading to
unmodeled dynamic behaviors (e.g., wheels skidding or steps).
In addition, farming robots must guarantee safe operations and,
in particular, avoid harming the plants.

In Astolfi et al [14], the authors present a full architec-
ture for an autonomous robot in a vineyard environment.
In particular, for the planning part, they exploit open-source
navigation packages such as Gmapping, Google’s Cartogra-
pher, and KartoSLAM. In Bascetta et al [15], the authors
merge the theory developed in [16] and [17] to develop a
Lyapunov-based methodology for trajectory tracking of Ack-
ermann steering kinematics. The proposed control law is tested
with real experiments on a commercial all-terrain vehicle
showing good tracking performance. An efficient navigation
planning for farming robots is presented in [18]. In this work,
the authors propose a search-based planner for a robot with
adjustable wheel positions. The proposed method is evaluated
on simulated and real-world data with a Bosch Bonirob robot.

An alternative manner to achieve autonomous navigation in
farmlands is through visual feedbacks coming from one or
more cameras. In this regards, English et al. [19] proposed
a vision-based crop-row following system. A highly related
work has been proposed by Sharifi et al. [20] that addresses
the problem of steering an agricultural robot in orchards. The
authors introduce a novel vision-based technique that extracts
the desired central path to follow from the captured color
images. Experiments show that the proposed method correctly
estimates a viable path for the mobile robot. While effective,
these systems do not take explicitly into account obstacles and
might not guarantee safe and reliable navigation in an orchard

https://tinyurl.com/s4ofvuz
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environment.

B. Contributions

The contributions of this work are the following: (i) a com-
plete navigation system (with an open-source implementation)
that addresses a very specific problem in nowadays high-
precision agricultural robotics, (ii) a novel non-smooth control
law with a full theoretical characterization of its convergence
property for Ackermann steering kinematics; (iii) an experi-
mental validation of the proposed navigation architecture in a
real-world (1:1 scale) precision farming setting.

II. ACKERMANN STEERING KINEMATICS

In this section, we briefly review the basic concept of
the Ackermann Steering Geometry. An Ackermann front-
wheel-steering vehicle can be conveniently expressed from a
mathematical standpoint in terms of a Bicycle model. In this
model, the control inputs are the linear velocity v and the
steering angle φ. Specifically, the following set of equations
can be used to describe the kinematics of a Bicycle model:

ẋ(t) = v(t) cos(θ(t))

ẏ(t) = v(t) sin(θ(t))

θ̇(t) =
v(t)

`
tan(φ(t))

(1)

where q(t) = [x(t), y(t), φ(t)]T denotes the state vector at
time t with p(t) = [x(t), y(t)]T representing the position of
the robot in the Cartesian plane at time t w.r.t. the global
reference frame Σg = (xg, yg, θg) , and θ(t) representing its
orientation with respect to the x-axis of global reference frame
Σg at time t, u(t) = [v(t), φ(t)]T denotes the input vector
at time t with v(t) and φ(t) representing the linear velocity
and the steering angle, respectively, at time (t), and finally
` denotes the wheelbase, i.e., the distance between the front
and rear axles. In the following we will refer to the Bicycle
kinematics in a compact form as

q̇(t) = f(q(t), u(t)), (2)

with f(·, ·) the system dynamics defined according to eq. (1).
In the sequel, the time-dependence will be omitted if not
strictly required for the sake of readability. In this work we
assume that the vehicle reference frame Σr = (x, y, θ) is
going to be located at the center of the rear axle (see Fig. 2).

III. TRAJECTORY PLANNING WITH OBSTACLES

The goal of the trajectory planner is to generate optimal
trajectories over a time horizon T from any given initial pose
and velocity that fulfill the following requirements:

i) the trajectory steers the robot to a given target pose;
ii) the trajectory satisfies the Ackermann kinematics con-

straints and is collision-free;
iv) the trajectory is generated in a receding horizon fashion

and in real-time.
We reiterate that the latter aspect is essential in the farming

context since re-planning in real-time allows the robot to react
in time to avoid dynamical obstacles and to handle perception
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Fig. 2: Equivalent Bicycle model for a front-wheel-steering vehicle.

uncertainties as well. The whole problem can be formu-
lated as a cost-function minimization problem over a finite
time horizon T . To this end, let o(t) = [oT1(t), . . . , oo(t)T ]

T

be the state vector of the surrounding obstacles where
oi(t) = [xi(t), yi(t)]

T represents the state of the i-th obstacle
considered at time t described by its coordinates, and o(t)
is the number of detected obstacles at time t. Note that, a
time-varying index mapping i(t) is used in the mathematical
formulation to model the fact that the i-th obstacle considered
for planning the trajectory at time t depends on the actual
robot position at that time t.

In addition, let q(t) and u(t) be the state and the input
vectors of a robot at time t, respectively, with dynamics
defined according to eq. (1) and expressed in a compact form
according to (2).

The following optimization problem formulation is consid-
ered for the navigation of an Ackemann steering vehicle in a
high-precision farming environment filled with obstacles

minimize
q(t)

h(q(tf )) +

∫ tf

t0

cn(q(t), u(t)) + co(q(t), o(t)) dt

subject to ˙q(t) = f(q(t), u(t)),

r(q(t0)) = 0,

l(q(t), i(t)) ≤ 0 ∀ i ∈ {1, . . . , o(t)}
(3)

where h(q(tf )) describes the cost in the final state,
cn(q(t), u(t)) describes the navigation cost, co(q(t), o(t))
encodes the obstacle avoidance cost, r(q(t), o(t)) and
l(q(t), i(t)) encode the set of equality and inequality con-
straints to satisfy along the trajectory, and T = tf − t0 repre-
sents the time horizon in which we want to find the solution.
In particular, the cost function and the set of equality and



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2019

inequality constraints are defined as

h(q(tf )) = (qd − q(tf ))T Qf (qd − q(tf ))

co(q(t), o(t)) =

o(t)∑
i=1

(
(p(t)− oi(t))T Wi (p(t)− oi(t))

)−1
cn(q(t), u(t)) = u(t)T Ru(t) + (q(t)− qf )T Q (q(t)− qf )

l(q(t), i(t)) = dTmin dmin − (p(t)− oi(t))T (p(t)− oi(t))

r(q(t0)) = (qi − q(t0))T (qi − q(t0))
(4)

with qd representing the goal state, dmin a safety distance from
an obstacle, Qf , Wi, Q, R weighting matrices, qi and qf are
the initial pose and desired final pose, respectively.

In addition, it should be noticed that in order to comply with
the real-time requirements of the application and to increase
the flexibility of the approach, obstacles should be dynam-
ically added and removed according to a proper detection
and selection approach, e.g., only detected obstacles within
a certain radius from the current robot location are considered
for the planning. An obstacle detection algorithm purposely
designed for the precision farming setting considered within
the project PANTHEON, i.e., a hazelnut orchard, is currently
being developed and will be the object of future work.

IV. POSE REGULATION PROBLEM FORMULATION

In this section, we focus on the pose regulation problem for
the Bicycle kinematic model given in eq. (1), i.e., the problem
of designing a control law which is capable of steering the
vehicle from any initial configuration qi = [xi, yi, φi]

T to any
desired final configuration qd = [xd, yd, φd]

T . To facilitate the
analysis, it is convenient to formulate the regulation problem
in polar coordinates q̂ = [ρ, γ, δ]T . For a given pose q =
[x, y, φ]T this coordinate transformation is defined as

ρ =
√
(xd − x)2 + (yd − y)2

γ = atan2((yd − y), (xd − x))− θ + π

δ = γ − (θd − θ)
(5)

where ρ is the distance between the point (x, y) of the Acker-
mann reference frame Σr and the origin of the Cartesian plane,
γ the angle between the Cartesian error vector ep = pd − p
and the sagittal axis of the vehicle, and δ the angle between
the same vector and the x-axis.

In these polar coordinates q̂ = [ρ, γ, δ]T , the kinematic
model of the Ackermann steering is

ρ̇ = −v cos(γ)

γ̇ =
sin(γ)

ρ
v − v

`
tan(φ)

δ̇ =
sin(γ)

ρ
v

(6)

note that the input vector field associated with v = 0 is
singular for ρ = 0. In the sequel, with no lack of generality
we assume that the desired configuration is the origin, that is
qd = [0, 0, 0]T . We now provide our main result concerning
the pose regulation problem for vehicles with Ackermann
steering kinematics.

Fig. 3: Definition of polar coordinates for the Bicycle kinematics

Theorem 1. Let a ground vehicle with Ackermann kinematics
described by eq. (1). Assume that the initial configuration qi =
[xi, yi, θi]

T of the robot is such that

ρi ,
√
x2i + y2i 6= 0 (7)

Then, the pose regulation problem can be solved using the
following non-smooth control law

v = k1 ρ SIGN(cos(γ))

φ = acos

(
1√

κ2 + 1

)
SIGN(κ)

(8)

with κ =
`

v
κ′ where κ′ is defined as

κ′ =

(
k2γ + k1

sin(γ) SIGN(cos(γ))

γ
(γ + k3 δ)

)
(9)

with gains k3 > 0, k2 > 0, and k1 > 0, and with the sign
operator SIGN(·) defined as

SIGN(x) =

{
1 if x ≥ 0

−1 otherwise
(10)

Proof. Note that, being the control law discontinuous, some
tools coming from the non-smooth analysis are required, see
e.g [21]–[23] and references therein for a comprehensive
overview of the topic. To prove stability, the following gener-
alized Lyapunov function is considered

V = V1 + V2 + V3 =

(
1

2
ρ2 +

1

2
γ2 +

1

2
k3δ

2

)
(11)

the generalized Lyapunov time-derivate along the closed-
loop system trajectories is

˙̃V = V̇1 + V̇2 + V̇3 = ρ ρ̇+ γ γ̇ + k3δ δ̇ (12)

Let us now analyze each of the three terms V̇1, V̇2 and V̇3
of the generalized Lyapunov time-derivative ˙̃V . For what
concerns the term V̇1, we have

V̇1 = ρ ρ̇ = ρ (−K[v] cos(γ))

= ρ (− (K[k1 ρ SIGN(cos(γ))]) cos(γ))

= −k1ρ2 cos(γ)K[SIGN(cos(γ))]

= −k1ρ2 |cos(γ)|

(13)
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Similarly, the following holds for the term V̇2

V̇2 = γ γ̇ = γ

(
sin(γ)

ρ
K[v]− K[v]

`
tan(K[φ])

)
= γ

(
sin(γ)

ρ
K[v]+

−
(
k2γ + k1

sin(γ)K[SIGN(cos(γ))]

γ
(γ + k3 δ)

))
= γ

sin(γ)

ρ
K[v]−k2γ2− sin(γ)

ρ
K[v]γ−k3 δ

sin(γ)

ρ
K[v]

= −k2γ2 − k3 δ

(
sin(γ)

ρ
K[v]

)
(14)

where the relationship atan(x) = acos
(

1√
x2+1

)
SIGN(x)

along with properties coming from the calculus for computing
the Filipov’s differential inclusions [21], [23], were used to
perform the following substitution

K[v]

`
tan(K[φ]) =

K[v]

`
tan(K[atan(κ)])

=
K[v]

`

`

K[v]
K[κ′] = K[κ′]

(15)

where it should be noticed that eq. (15) holds true as long as
v 6= 0, that is ρ 6= 0. This further motivates the assumption
on the initial condition given in eq. (7). Finally, the following
holds for the term V̇3

V̇3 = k3δ δ̇ = k3δ

(
sin(γ)

ρ
K[v]

)
. (16)

By putting together the expression for the three terms we
obtain the following expression for the generalized Lyapunov
time-derivative ˙̃V

˙̃V = V̇1 + V̇2 + V̇3

= −k1ρ2 |cos(γ)| − k2γ2+

− k3 δ
(
sin(γ)

ρ
K[v]

)
+ k3δ

(
sin(γ)

ρ
K[v]

)
= −k1ρ2| cos(γ)| − k2γ2

(17)

which proves that the time derivative along the closed-loop
system trajectories is negative semi-definite.

At this point, by resorting to the generalized LaSalle invari-
ance theorem [22], let us define the set S, which represents
the set of states for which the generalized Lyapunov derivative
is zero in polar coordinates as

S = {q̂ ∈ R× S2 : ˙̃V = 0}
= {q̂ ∈ R× S2 : ρ = γ = 0}

(18)

and let us compute the largest invariant setM. To this end, we
are going to resort to a special case of viability result in the
study of differential inclusions which states that for all points
q̂ ∈M, the following must hold true

TS(q̂) ∩K[f ](q̂) 6= ∅, ∀ q̂ ∈M (19)

where TS(q̂) the contingent cone to S at q̂ and K[f ](q̂) is the
Filippov set with f(·) the stacked vector representation of the
Ackermann Steering kinematics in polar coordinates. Let us

now compute TS , that is the contingent cone to S at q̂ ∈M,
as

TS(q̂) = span
[
0, 0, 1

]T
(20)

and let us compute the Filippov set K[f ](q̂) as

K[f ](q̂) =

 0

k1 k3 [−1, 1] δ
0

 (21)

At this point, it can be noticed that TS(q̂) ∩ K[f ](q̂) 6= ∅
holds true only at the intersection, implying that the largest
set M must contain only the origin, that is q̂ = [0, 0, 0]T .
This proves that the proposed control law solves the regulation
problem for the Ackermann Steering kinematics under the
condition that the initial configuration qi satisfies eq. (7).

A few remarks are now in order:
i) The assumption on the initial configuration qi is a direct

consequence of the control law definition given in eq. (8),
which implies that the if ρ = 0, then the velocity v is
null, thus preventing any vehicle motion to occur. This
can be intuitively explained by the fact that if the initial
pose is already at the desired position but with a different
orientation from the desired one, being the Ackermann
Steering vehicle not capable of rotating along its vertical
axis, a (complex) maneuver would be required to reorient
it, which would necessarily require ρ to increase, thus
going against the negative semi-definiteness of the time
derivative of the generalized Lyapunov function. We point
out that should the problem given in eq. (7) occur, the
planner would compute a feasible trajectory through a
series of successive way-points.

ii) The proposed control law is discontinuous at the origin of
the configuration space. Indeed, it is well-known that any
feedback law that can regulate the posture of a vehicle
with non-holonomic constraints must be necessarily dis-
continuous with respect to the state and/or time-varying
(Brockett Theorem) [24].

V. NUMERICAL AND EXPERIMENTAL VALIDATION

In this section a numerical and experimental validation is
provided to demonstrate the effectiveness of the proposed
navigation architecture in precision farming settings.

A. Simulated Navigation

In this section, we numerically demonstrate the capabilities
of the proposed navigation architecture in a simulated hazelnut
farming scenario. The experiments have been carried out
through GAZEBO, a robotic simulation toolbox. The non-
linear planning problem is set up with the ACADO toolbox
and solved by the qpOASES solver [25]. By using the ACADO
code generation tool, the problem is exported in a highly effi-
cient c-code that we integrated within a ROS (Robot Operating
System) node. We set the discretization step to be dt = 0.5 s
with a time horizon T = 15s. The planned trajectory, which is
described by a discrete sequence of poses, is then fed into the
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control law node as a sequence of waypoints, while the output
Ackermann control inputs are mapped to the wheel motors by
a simulated low-level controller running on-board.

The experiment consists of planning trajectories from a
given initial pose qi to a sequence of desired poses qd =
(qd1 , . . . , qdM ). For each pair of poses, the local planner will
compute an obstacle-free trajectory described by a sequence
of successive waypoints. To ensure smooth navigation with
no stop-and-go behavior, a new waypoint is fed into the
control law when the distance from the current waypoint has
become smaller than a given threshold (set to 0.2 meters in
our simulations). For the numerical validation, the control
gains are tuned as (k1, k2, k3) = (1, 6, 3). Indeed, this choice
has numerically proven the robot to satisfactory follow the
obstacle-free trajectory. It should be noticed that for the
numerical validation, a custom-built GAZEBO model of the
SHERPA robotic platform has been developed. Briefly, this
model is equipped with the same sensor setup as the real
platform and moves according to the Ackermann steering
kinematics.

Fig. 4: Examples of a planned trajectory in a simulated scenario filled
with static obstacles (green) and a dynamic obstacle (red). The green
obstacles are arranged to resemble the planting layout of hazelnut
trees as in the real field.

An example of a planned trajectory in the presence of a
dynamic obstacle is depicted in Figure 4. Tab. I reports tra-
jectory statistics from exhaustive simulations carried out with
different setups. Results are sorted by increasing trajectory
planning difficulties, either in terms of path length or presence
of dynamic obstacles. The success rate is almost 100%,
while it slightly decreases when adding “last-meter” dynamic
obstacles along the planned route, which may leave no space to
corrective maneuver. Nevertheless, the final position and angle
errors remain almost unchanged, proving the effectiveness of
the control law.

B. Experimental Setup

Real experiments have been carried out within one of
the real-word hazelnut orchards of the PANTHEON project,
within the “Azienda Agricola Vignola”, a farm located in the
municipality of Caprarola, in the province of Viterbo, Italy. In
particular, the experiments have been carried out in a young

orchard (cultivar Nocchione treated as multi stemmed bushes)
with a 4.5 m x 3.0 m layout.

Fig. 5: SHERPA HL robotic platform prototype R-A.

Figure 5 shows the ground vehicle prototype, namely
SHERPA HL robotic platform R-A, which has been used for
the experimental validation. The SHERPA HL R-A platform is
mechanically designed to operate according to the Ackermann
Steering kinematics. The platform is equipped with a Trimble
MB-Two GNSS Receiver with GPS-RTK capabilities, a SBG
Ellipse2-E IMU with an integrated compass, two Sick S300
Safety Laser Scanners, and a Velodyne VLP-16 Puck LITE
3D LIDAR. The platform also mounts an Intel NUC NF697
with an Intel Core i7-8705G Processor where the low-level
software and the proposed control law run. The planner runs
on an independent laptop with an Intel i7-8750H processor
and the optimal trajectories are sent to the robot through a
Wi-Fi connection. The non-linear planner and the control law
are set up as described in Sec. V-A.

C. Pose Regulation

In this section, we experimentally demonstrate the effec-
tiveness of the proposed control law in a real-world high-
precision farming scenario, i.e., the hazelnut orchard described
in Section V-B. In all the regulation experiments the con-
trol gains and the desired state are tuned as (k1, k2, k3) =
(0.3, 1.5, 3) and qd = (qx,d, qy,d, qz,d), respectively. The pose
regulation task is performed with the real robotic platform
and for 8 different starting poses qi derived by sampling a
set of positions over a circle with a radius of 6 meters. The
trajectories performed by the robot are reported in Figure 6,
where it can be noticed that the robot successfully reaches
the desired pose from all the initial conditions and shows a
symmetrical behavior. Note that, to easy the visualization of
this experimental validation the origin of the reference frame
is relocated at the desired position pi of the robot.

D. Navigation

In this section, we experimentally demonstrate the capabil-
ities of the proposed navigation architecture in a real-world
high-precision farming scenario, i.e., the hazelnut orchard
described in Section V-B. In particular, we demand the robot
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Fig. 6: Trajectories performed by the robot to reach the desired state
in the field 16 of the hazelnut orchard. In red, the orientation of the
vehicle sampled proportionally to the vehicle velocity.

Dynamic
Obstacle

Trajectory
lenght [m]

Failure
rate [%] v [ ms ] φ [rad] Min. Obst.

Distance
Position
err. [m]

Angle
err. [rad]

5 .02 .34 .75 1.34 .11 .08
7 .03 .33 .81 1.41 .09 .05
9 .03 .36 .78 1.36 .07 .07

X 9 4.06 .4 .98 1.19 .13 .12
X 12 4.75 .43 1.04 1.25 .11 .09
X 13 3.97 .41 1.05 1.23 .12 .11

TABLE I: Simulations: trajectory statistical analysis.

to move from an initial pose qi to the desired pose qd on
a different orchard row. Thus, forcing the robot to plan a
safe trajectory among trees. Three examples of trajectories
performed by the real robotic platform are illustrated in
Figure 7, where in the first case the robot moves forward while
in the second and third cases the robot moves backward. It can
be noticed that in all three cases, the robot successfully reaches
the desired goal by passing in the intermediate point between
two adjacent trees when switching from one row to another.
In the third case, we spawn a virtual obstacle on the planned
route. The robot is then forced to re-plan a different trajectory
(depicted in red) to reach the desired goal. As reported in
Table II, the robot always manages to reach the goal with a
small error. The only exception is the third trajectory where,
having delayed the switching maneuver between the rows,
the robot does not find enough room to align its yaw with
the desired one. Note that, to easy the visualization of these
experimental results, in this case, the origin of the reference
frame is relocated at the initial position pi of the robot. In
addition it should be further noticed that the second and the
third trajectories depicted in Figure 7 are also reported in the
attached multimedia material together with a real footage of
the robotic platform.

Dynamic
Obstacle

Trajectory
lenght [m] v [m

s
] φ [rad] Min. Obst.

Distance
Position
err. [m]

Angle
err. [rad]

9.5 .28 .30 1.01 .09 .12
9.5 .31 .31 1.05 .08 .09

X 9.5 .29 .41 1.14 .11 .19

TABLE II: Experiments: trajectory statistical analysis.

0 5 10
x[m]

-6

-4

-2

0

2

y[
m

]

traj
bdo

-10 -8 -6 -4 -2 0
x[m]

-2

0

2

4

6

y[
m

]

traj
bdo

-10 -8 -6 -4 -2 0
x[m]

-2

0

2

4

6

y[
m

]

traj
bdo

traj
do

traj
wdo

Fig. 7: Trajectories performed by the robotic platform in a real
hazelnut orchard (plants are represented by the green circles). From
top to bottom, a front-wise maneuver, a rear-wise maneuver and a
maneuver with a dynamic obstacle (red dot). The second and third
trajectories are also reported in the attached multimedia material
together with a real footage of the robotic platform.

E. Computational Time

In this section, we numerically validate the real-time plan-
ning capability of the proposed navigation architecture. To
this end, it should be noticed that the computational cost is
not constant. Indeed, it may vary according to the specific
operating mode of the planner. For this reason, we distinguish
among three different planning modes:
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1) Initial mode (blue): which occurs when the vehicle start
planning a new trajectory;

2) Steady mode (green): which occurs when the vehicle is
already moving toward the target pose;

3) Emergency mode (red): which occurs when a dynamic
obstacle suddenly appears along the optimal trajectory.

Figure 8 reports the average computational costs for all the
planning phases. The average computational cost is constantly
lower than 0.033s. As expected, the steady-planning phase
turns out to be the cheapest one since the robot moves slowly
and the trajectory to re-plan is close to the previous one.
Conversely, the emergency re-planning phase is the most
expensive and variable, as the trajectory to re-plan is usually
far from the previous one since the dynamic obstacle might
drastically change the optimal path.
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Fig. 8: Average computational time plot across the planning phases
over a time horizon of 8 seconds: the (i) planning phase in blue,
(ii) the steady-planning phase in green, and (iii) the emergency re-
planning phase in red. The shaded areas represent the variance of the
average computational time.

VI. CONCLUSIONS

In this letter, we present an effective navigation architec-
ture for Ackermann vehicles in orchard environments which
leverages a synergy between an optimal planner and a novel
pose regulation controller. The former generates, in real-time,
a sequence of successive poses that steers the robot towards its
desired location while avoiding all the surrounding obstacles.
The pose regulation ensures the convergence toward each of
these poses. A numerical and experimental validation has been
carried out to demonstrate the effectiveness of the proposed
navigation architecture, showing reliability even in the case of
dynamic obstacles suddenly appearing along the planned route.
Future work will be mostly focused to enrich this navigation
architecture, e.g., by developing the obstacle detection module
responsible for the “on-the-fly” detection of the obstacles to
be fed into the local planner.
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I. Sa, R. Dubé, A. Gawel, M. Pfeiffer, A. Liniger, J. Lygeros, and
R. Siegwart, “AMZ driverless: The full autonomous racing system,”
CoRR, vol. abs/1905.05150, 2019.

[9] J. Kabzan, L. Hewing, A. Liniger, and M. N. Zeilinger, “Learning-based
model predictive control for autonomous racing,” IEEE Robotics and
Automation Letters, vol. 4, no. 4, pp. 3363–3370, Oct 2019.

[10] A. Liniger, A. Domahidi, and M. Morari, “Optimization-based au-
tonomous racing of 1:43 scale rc cars,” Optimal Control Applications
and Methods, vol. 36, no. 5, pp. 628–647, 2015.

[11] U. Rosolia, A. Carvalho, and F. Borrelli, “Autonomous racing using
learning model predictive control,” in 2017 American Control Confer-
ence (ACC), May 2017, pp. 5115–5120.

[12] B. Paden, M. p, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of
motion planning and control techniques for self-driving urban vehicles,”
IEEE Transactions on Intelligent Vehicles, vol. 1, no. 1, pp. 33–55,
March 2016.

[13] A. Latif, A. Rasheed, U. Sajid, J. Ahmed, N. Ali, N. I. Ratyal, B. Zafar,
S. Dar, M. Sajid, and T. Khalil, “Content-based image retrieval and
feature extraction: A comprehensive review,” Mathematical Problems in
Engineering, vol. 2019, 08 2019.

[14] P. Astolfi, A. Gabrielli, L. Bascetta, and M. Matteucci, “Vineyard
autonomous navigation in the echord++ grape experiment,” vol. 51, pp.
704–709, 01 2018.

[15] L. Bascetta, D. A. Cucci, and M. Matteucci, “Kinematic trajectory
tracking controller for an all-terrain ackermann steering vehicle,” IFAC-
PapersOnLine, vol. 49, no. 15, pp. 13 – 18, 2016, 9th IFAC Symposium
on Intelligent Autonomous Vehicles IAV 2016.

[16] G. Indiveri, “Kinematic time-invariant control of a 2d nonholonomic
vehicle,” in Proceedings of the 38th IEEE Conference on Decision and
Control, vol. 3, Dec 1999, pp. 2112–2117 vol.3.

[17] M. Aicardi, G. Casalino, A. Bicchi, and A. Balestrino, “Closed loop
steering of unicycle like vehicles via lyapunov techniques,” IEEE
Robotics Automation Magazine, vol. 2, no. 1, pp. 27–35, March 1995.

[18] F. Fleckenstein, C. Dornhege, and W. Burgard, “Efficient path planning
for mobile robots with adjustable wheel positions,” in 2017 IEEE
International Conference on Robotics and Automation (ICRA), 2017.

[19] A. English, P. Ross, D. Ball, and P. Corke, “Vision based guidance for
robot navigation in agriculture,” in 2014 IEEE International Conference
on Robotics and Automation (ICRA), May 2014, pp. 1693–1698.

[20] M. Sharifi and XiaoQi Chen, “A novel vision based row guidance
approach for navigation of agricultural mobile robots in orchards,”
in 2015 6th International Conference on Automation, Robotics and
Applications (ICARA), Feb 2015, pp. 251–255.

[21] B. E. Paden and S. S. Sastry, “A calculus for computing filippov’s
differential inclusion with application to the variable structure control
of robot manipulators,” in 1986 25th IEEE Conference on Decision and
Control, Dec 1986, pp. 578–582.

[22] D. Shevitz and B. Paden, “Lyapunov stability theory of nonsmooth
systems,” IEEE Transactions on Automatic Control, vol. 39, no. 9, pp.
1910–1914, Sep. 1994.

[23] R. K. Williams, A. Gasparri, G. Ulivi, and G. S. Sukhatme, “Generalized
topology control for nonholonomic teams with discontinuous interac-
tions,” IEEE Transactions on Robotics, vol. 33, no. 4, pp. 994–1001,
Aug 2017.

[24] R. W. Brockett, “Asymptotic stability and feedback stabilization,” in
Differential Geometric Control Theory, R. S. M. R. W. Brockett and
H. J. Sussmann, Eds. Boston: Birkhauser, 1983, pp. 181–191.

[25] J. Ferreau, “An online active set strategy for fast solution of parametric
quadratic programs with applications to predictive engine control,” Ph.D.
dissertation, 01 2006.


	Introduction
	Related Work
	Contributions

	Ackermann Steering Kinematics
	Trajectory Planning with Obstacles
	Pose Regulation Problem Formulation
	Numerical and Experimental Validation
	Simulated Navigation
	Experimental Setup
	Pose Regulation
	Navigation
	Computational Time

	Conclusions
	References

