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Abstract—This paper presents a multi-agent control archi-
tecture and an online optimization method based on dynamic
average consensus to coordinate the power consumption of a
large population of Thermostatically Controlled Loads (TCLs).
Our objective is to penalize peaks of power demand, smooth the
load profile and enable Demand Side Management (DSM). The
proposed architecture and methods exploit only local measure-
ments of power consumption via Smart Power Sockets (SPSs)
with no access to their internal temperature. No centralized
aggregator of information is exploited, and agents preserve their
privacy by cooperating anonymously only through consensus-
based distributed estimation. The interactions among devices
occur through an unstructured peer-to-peer (P2P) network over
the internet.

Methods for parameter identification, state estimation and
mixed logical modelling of TCLs and SPSs are included. The
architecture is designed from a multi-agent and plug-and-play
perspective in which existing household appliances can interact
with each other in an urban environment.

Finally, a novel low cost testbed is proposed along with
numerical tests and an experimental validation.

Index Terms—Multi-agent systems, electric demand side man-
agement, thermostatically controlled loads, online randomized
optimization, distributed predictive control.

I. INTRODUCTION

DEMAND-Side Management (DSM) aims to manage the
electric power demand to match baseload power gener-

ation, thus reducing the use of costly and polluting peaker
power plants [1]. Although statistics may vary depending on
the country, in US the 40% of the total electric demand
is due to residential consumption [2] of which the largest
share is due to electric heating and cooling achieved by the
so-called Thermostatically Controlled Loads (TCLs), such as
water heaters, freezers, radiators, and air conditioners.

The coordination of the power consumption of these TCLs
during daily peaks of urban power consumption is crucial
to reduce costs [3]. However, due to the time-correlation of
consumers’ power consumption combined with the penetration
of volatile renewable generation have exposed the inadequacy
of unidirectional DSM strategies [4].
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To provide some flexibility in controlling the urban power
demand, several strategies that focus on actively modulating
the on/off power consumption profiles of TCLs to provide
ancillary services to the grid have been proposed, see [5], [6],
[7], [8].

Literature review: Often in the literature of DSM the key-
words “distributed control” and “multi-agent” are associated
to distributed decision making by agents consisting of smart
homes or devices interacting with a centralized information
aggregator which collects data and updates the local set-points.

Within this framework, in [9] a DSM feedback scheme
for air conditioners, where broadcasts of thermostat set-points
offset changes to the TCLs is proposed. This approach looks
well-suited for building automation applications since it re-
quires readings from a common power distribution connection
cabinet, where the total aggregate demand is measured.

In [10] the problem of optimally dispatching a set of energy
resources is addressed as a convex optimization problem where
“ratio-consensus” algorithm enables the distributed decision
making process to occur in an unbalanced directed graph.

In [11] a distributed algorithm to control a network of TCLs
to match, in real time, the aggregated power consumption of
the population of TCLs with the predicted power supply is
proposed. It consists on a consensus-based optimization of
the sum of TCL temperature differences with respect to a
desired reference. There, each TCL is executes periodically
an instance of a consensus algorithm to estimate the total
TCLs’ aggregate demand. Based on this estimation and on a
centralized forecast of power consumption, the desired power
consumption is assigned to each TCL.

Similarly, measurements on the TCLs internal temperatures
are considered in [7]-[12] where a game theoretic approach
which optimizes a quadratic objective function of the TCLs’
temperature profile is considered. The decision making is
made by the TCLs and a centralized aggregator of information
computes average state values to be used as feedback. Finally,
we mention [13], [14], which instead dispense of the presence
of any information aggregator. There, motivated by the peak-
to-average ratio minimization problem in a network of TCLs,
a distributed optimization method to solve min-max problems
characterized by local convex constraints is presented.

All mentioned strategies require costly “smart” versions of
TCLs with advanced communication, actuation and sensing
capabilities that are not implemented on off-the-shelf TCLs.
This increases the cost of the DSM infrastructure which
efficacy ultimately depends on the number of users.
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Furthermore, the existence of centralized information ag-
gregators renders the whole system vulnerable to Denial
of Service (DoS) cyber-attacks. Moreover, issues with the
privacy of the consumers whose consumption is continuously
monitored need to be considered [15].

In this paper we propose a different framework where
smart devices (agents), TCLs in particular, cooperate within
a peer-to-peer network autonomously and anonymously with
a small set of neighboring agents in the network graph. The
proposed method aims to exploit only local and asynchronous
anonymous interactions among the agents to optimize trough
their emergent behavior a global objective function defined
by their power consumption. In particular, we chose an
objective function which incentivizes the shaving of peak
power consumption and reduction of electric load variations by
the network of TCLs. Through the proposed framework, the
power consumption of the network can be modulated, thus
enabling the shaping of the electric load profile without any
direct control action on any device or the sharing of power
consumption information with a centralized coordinator.

The proposed method is paired with a multi-agent control
architecture which is intended to exploit the cheapest possible
hardware to enable cooperation among devices, i.e., a Smart
Power Socket (SPS), suitable to retrofit existing TCLs such
as domestic water heaters, thus greatly reducing the cost of
the infrastructure needed for the electric DSM program and
therefore significantly reducing the cost of adoption by the
users. This design choice makes the control problem more
challenging because on each device the identification of the
TCL dynamics, the estimation of its state on its control has to
be carried out with only power consumption measurements and
ON/OFF control capability. For instance, in [16] the problem
of identifying the dynamics of the TCL was addressed by
either considering its internal temperature measurable or at
least assuming that the temperature range of the thermostat
(maximum and minimum temperature) was known in absolute
terms. In this paper, we only exploit power consumption
measurement to develop a real plug-and-play approach which
does not require any system configuration by the user.

Since only randomized, asynchronous, and anonymous local
interactions among neighboring agents are considered, our
strategy has the advantages of being robust against DoS
cyber-attacks since there is no centralized decision maker or
information aggregator to provide a vulnerability to attack.
Also, the agents are coupled only by a dynamic average
consensus estimation process which is robust to switching
network topologies, i.e., link failure, and do not need to be
re-initialized if an agent leaves the network, i.e., node failure.

Finally, scalability for implementation on large-scale net-
works is ensured by exploiting local control actions which do
not increase in complexity with the size of the network and
no network-wide event synchronization is required.

Summarizing, the main contributions are:

• A multi-agent DSM architecture for the coordination of
anonymous networks of TCL via SPS;

• A method for model identification for TCLs based only
on power consumption measurements;

• An observer for the estimation of the TCL internal state
based only on power consumption measurements;

• A distributed, randomized, online optimization method
for the cooperative constrained optimization of the power
consumption by the network of TCLs controlled by SPSs;

• A low-cost experimental testbed based on off-the-shelf
hardware and purpose-built software;

• An experimental validation of the proposed method.
Structure of the paper: In Section II a model of a TCL

and SPS is presented together with the adopted notation.
In Section III the considered DSM problem is formulated.
Section IV presents the details of proposed DSM architecture.
In Section V the proposed online distributed optimization
method is presented and some of its convergence properties
are characterized. Testbed and experiments are discussed in
Section VI. Concluding remarks are in Section VII.

II. MODELLING OF THERMOSTATICALLY CONTROLLED
LOADS AND SMART POWER SOCKETS

Consider a multi-agent system (MAS) consisting of a pop-
ulation V = {1, . . . ,n} of agents. Each agent “i” consists of a
TCL with its power outlet plugged into a SPS adapter.

SPSs are provided with processing and WiFi communi-
cation capabilities. Each SPS is connected to a peer-to-peer
network over the internet. At time tk ∈ R+, the network
topology is described by the graph G(tk) = (V ,E(tk)), where
E(tk)⊆ {V×V} is the set of active links. Each socket can
monitor the active power pi(tk) ∈ R+ absorbed by the as-
sociated TCL, while enabling the power supply to the TCL
by actuating its own switch state si(tk) ∈ {0,1} to ON, i.e.
si(tk) = 1. Otherwise si(tk) = 0 forces the TCL to be OFF as
well, which further implies pi(tk) = 0.

Let ∆τ = tk+1− tk > 0 be the constant sampling interval be-
tween two time instants, following [9]-[14], the TCL dynamics
is well approximated at discrete instants of time by

T i(tk+1) = T i(tk) · e−α i∆τ+(
1− e−α i∆τ

)(
T i

∞ + qi

α i ui(tk)+w(tk)
)
,

(1)

where T i ∈ R+ denotes the thermostatically controlled tem-
perature of the TCL. α i > 0 is the heat exchange coefficient
with the operating environment, the temperature T i

∞ of which
is assumed to be slowly varying. w(tk) ∈ R models unknown
disturbances, for instance, it may represent the temperature
drop due to the refill process with cold water on an electric
water heater after a water drawing event generated by the user.

Finally, qi > 0 and ui(tk) ∈ {0,1} denote the nominal heat
generated by the electric heating element and its actual state.
In particular, since the SPS switch is connected in series with
the TCL power supply, ui(tk) can be rewritten as follows

ui(tk) = si(tk) ·hi(tk), (2)

where hi(tk)∈{0,1} denotes the internal TCL thermostat relay
control the value of which is updated according to

hi(tk+1) :

 0 if T i(tk)≥ T i
max

hi(tk) if T i(tk) ∈
(
T i

min,T
i

max
)

1 if T i(tk)≤ T i
min

(3)
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and which forces T i(tk) to remain within a neighborhood of
the operating range, with T i

min < T i
max. From (2), necessary

condition to have ui = 1 is si = 1, not vice-versa. Follows
that the agent dynamics are not only hybrid and subjected to
the non-convex mixed-integer constraints (2), but also under-
actuated with respect to SPS switch control variable si.

Moreover, let pi > 0 be the measured nominal amount of
power absorbed by the TCL “i” when its heater element is
ON. In the remainder, for simplicity’s sake, its actual power
consumption is approximated by

pi(tk) = pi ·ui(tk) = pi ·
(

si(tk) ·hi(tk)
)
. (4)

In practice, the measurement of pi(tk) is noisy. Moreover,
unmodelled dynamics affect the heater response, thus mak-
ing (3) no more instantaneous, as instead approximated, but
much more similar to the step response of a high order
system with dominant poles. Thus, to evaluate ui(tk) ∈ {0,1}
in accordance with (2)-(3), from pi(tk), we consider

ui(tk) :
{

1 if pi(tk)> ε i
n

0 otherwise (5)

where ε i
n > 0 denotes a threshold to discriminate when the

TCL is ON or OFF, in spite of the measurement noise and
unmodelled actuator dynamics. Its value is chosen well above
the noise measurement level when the TCL is OFF, and well
below pi in (4), when the TCL is ON, such that (5) meets the
model (2)-(3). Experiments indicates as good a threshold of 5
Watts. Finally, the total aggregated power demand associated
with the population of TCL-plus-SPS agents is

P(tk) = ∑
i∈V

pi(tk) = ∑
i∈V

pi ·ui(tk) = ∑
i∈V

pi ·
(

si(tk) ·hi(tk)
)
. (6)

III. MULTI-AGENT ORIENTED DEMAND SIDE
MANAGEMENT COORDINATION OBJECTIVE

We propose a fully distributed coordination strategy which
enables a population of TCL-plus-SPS agents to optimize, over
a receding horizon time window τ(tk) = [tk +∆τ, tk +L∆τ] of
length L∆τ where parameter L is the number of time slots, a
globally coupled quadratic cost

J(tk) =
1
L

L

∑
`=1

(P̀ (tk))
2 =

1
L

L

∑
`=1

(
∑

i∈V
pi ·ui

`(tk)

)2

(7)

which penalizes the peaks of power demand while promoting
the TCL consumption desynchronization. In (7),

P̀ (tk) = ∑
i∈V

pi ·ui
`(tk) (8)

denotes the prediction performed at time tk on the power
demand expected for the population of TCLs at the future
time tk+` = tk + `∆τ , `= 1,2, . . . ,L.

Remark 3.1: The objective of (7) can be motivated by a
scenario where the energy provider changes the electricity cost
proportionally to the demand in real time, to smooth and shave
off peaks in the power demand. Let c`(tk) = c̄`P̀ (tk), c̄` > 0,
be the cost predicted at time tk for time tk+`, then (7) reduces
to J(tk) = 1

L ∑
L
`=1 c`(tk)P̀ (tk). �

Remark 3.2: Since (7) is a sum over the receding horizon
time-window of the squared expected power consumption
P̀ (tk), the reduction in the Peak-to-Average Ratio (PAR)
[17] of the power consumption in the network is expected.
However, to prevent disservices to users, each TCL abides by
the constraint T i(tk) ∈ [T i

min,T
i

max] which represents its desired
temperature range. Thus, the averaged power demand by the
network is not allowed to change significantly. It follows that
the optimization of (7) incentives the shaving of consumption
peaks while reducing the electric load variations with respect
to the averaged demand and thus promotes, as by-product, the
TCLs’ consumption desynchronization. �

The network topology is modelled by a connected graph,
which is unknown to the agents and possibly time-varying.
Moreover, to preserve the privacy, each agent has only access
to information on a small set of anonymous neighbouring
agents, and the timing and order of their state updates is
randomized.

It follows that (8), and thus also (7) are unknown to the
agents. Thus, to enable their cooperation, the quantity (8)
needs to be estimated in distributed fashion. We further point
out that J(tk) is not a separable function and that the local
optimization constraints are mixed integer linear, thus non-
convex.

Finally, since TCLs are retrofitted by means of a SPS, the
SPS switch can override only the thermostat ON state by
turning it OFF, not vice-versa, cfr. [9]-[14] where the TCLs
are fully actuated.

Despite these challenges, we provide a method to enable
each agent to optimize through local interactions the objec-
tive (7) by controlling the planning schedule for its own SPS
switch

si(tk) =
[
si
1 · · ·s

i
` · · ·s

i
L

]ᵀ
=
[
si(tk+1) · · ·si(tk+L)

]ᵀ
∈ {0,1}L. (9)

IV. PROPOSED MULTI-AGENT CONTROL ARCHITECTURE

The proposed multi-agent control architecture consists in:
i) methods to identify and observe the agents dynamics by
measuring only power consumption; ii) modeling of the agents
as Mixed Logic Dynamic (MLD) systems; iii) the TCL coop-
eration protocol (Algorithm 1).

A. Method for TCL Power Consumption Model Identification

In our scenario T i(tk) and T i
∞ are not available and T i

min,
T i

max are unknown. Thus, differently from [16], it is not
possible to derive any temperature information in absolute
terms. However, from (3) we observed that the falling (resp.
raising) edges on pi(tk) in (4) informs us that the T i(tk) is
equal to T i

max (resp. T i
min) due to the thermostatic control. Since

for our purposes it is sufficient to predict ui(tk+`) on the basis
of the last time instant in which ui(tk) switched on/off, the
estimation of T i(tk) can be relaxed up to a scale and bias
factor.

TCL modelling for DSM purposes: Let us consider a TCL
located in an environment where the temperature T i

∞ is slowly
varying and thus approximated by a constant for our purpose.
This assumption is reasonable in an urban areas where TCLs
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are often located indoor. Let us define a so-called “virtual
temperature” as

yi(tk) = β
i ·
(

T i(tk)−T i
∞

)
, (10)

where β i > 0 is an unknown parameter that linearly maps
T i(tk) ∈

[
T i

∞,T
i

max
]

to yi(tk) ∈
[
yi

∞ = 0,yi
max = 1

]
. By substi-

tuting (10) into (1), and by assuming, similarly with [16],
the TCL operating in retention mode during the identification
procedure, which means with no significant temperature drops
due to exogenous disturbances (i.e. wi ≈ 0 in (1)), it yields

yi(tk+1) = yi(tk) · e−α i∆τ +
β iqi

α i

(
1− e−α i∆τ

)
ui(tk). (11)

Let us now define ∆T i
off (resp. ∆T i

on) as the discharge (resp.
charge) interval of time to be waited to bring T i from T i

max
(resp. T i

min) to T i
min (resp. T i

max) when wi(tk) = 0, and si(tk) = 1
∀ tk ≥ 0. Then, note that the observation of the falling (resp.
raising) edges on pi(tk) in (4) through the SPS, not only
provide a measurement of ∆T i

off (resp. ∆T i
on), but it gives also

information on that T i(tk) and yi(tk) reached respectively T i
max

and yi
max (resp. T i

min and yi
min).

Identification procedure: The proposed method is based on
the measurement of ∆T i

off and ∆T i
on to estimate the parameters

of (11). If T i(tk) = T i
max, i.e., yi(tk) = 1) at tk = 0, from (3),

(11) reduces to

yi(∆T i
off) = e−α i∆T i

off = yi
min =⇒ α

i =
−ln

(
yi

min
)

∆T i
off

. (12)

On the contrary, if T i(tk) = T i
min at tk = 0, from (3) it yields

yi(∆T i
on) = yi

min · e
−α i∆T i

on +
β iqi

α i

(
1− e−α i∆T i

on

)
= 1. (13)

Then, by substituting (12) into (13), we have

η
i =

β iqi

α i =
1− yi

min · e
−α i∆T i

on

1− e−α i∆T i
on

=
1− yi

min · e
ln(yi

min)
∆T i

on
∆T i

off

1− e
ln(yi

min)
∆T i

on
∆T i

off

. (14)

It follows that, since the parameter yi
min is neither known nor

available from any measurement, the set of equations (12), (14)
has infinitely many solutions. Nonetheless, (12), (14) admits
an unique solution for each value of ȳi

min ∈ (0,1). Let ᾱ i, and
η̄ i = β iqi/ᾱ i be the solution of (12), (14) for yi

min = ȳi
min, then

the triple (ȳi
min, ᾱ

i, η̄ i) completely describe the states of (11)
which, if correctly initialized, provides a correspondence be-
tween the falling (resp. raising) edges of a measured sequence
of ui(tk) used as input in (11), and the fact that yi(tk) and
thus T i(tk) reach, with a given rate due to ∆T i

off and ∆T i
off, the

values of ȳi
min and T i

min (resp. 1 and T i
max).

Remark 4.1: The parameters of (1) can not be estimated
with no information on T i

min, T i
max, and T i

∞. On the contrary
the parameters of the model (11) can be estimated by fixing
an arbitrary value of yi

min. The choice of ȳi
min does not affect

the duration of the predicted charge/discharge time cycles of
yi(tk), which correspond to those of T i(tk), due to (12) and
(14). If at least two of the three absolute temperatures T i

min,
T i

max, and T i
∞ were available, the parameters of (1) could be

also estimated. �

Fig. 1: Top: Consumption data-set of ten hours of a real
water heater with pi ≈ 1.25kW acquired at night, when water
drawing events are less likely. Bottom: Output of model (11)
corresponding to the power consumption shown on top, with
the parameters estimated with two different choices of ȳi

min.

Remark 4.2: The identification strategy does not require
knowledge of β i, which is unknown and constant, in ac-
cordance with the assumption of slow change of T i

∞. This
is reasonable since, in urban areas, most of the TCLs are
located indoor. However, for long-term operations, it could
be necessary to update the parameters to account for the drift
of T i

∞ due to the seasonal changes. Finally, since α i is positive,
then (11) is bounded-input bounded-output stable. �
Due to unmodelled dynamics such as convection, or distur-
bances, a single observation of an ON-OFF cycle is not a
robust measure to estimate ∆T i

off and ∆T i
on. Let ∆T i

on,k and
∆T i

off,k, accordingly with the top plot of Fig. 1, be the k-th pair
of on-off time intervals of a data-set of consumption acquired
for identification purposes, experimental tests indicate that four
or five cycles of operation in retention mode is enough to
obtain reasonable statistical information through the observed
power consumption. Experimental validation: On the bottom
of Fig. 1 it is shown the forced response of model (11)
fed with the normalized measured power consumption ui(tk),
shown on top of Fig. 1. The model is initialized at ȳi

min in
correspondence of the first rising edge of pi(tk). Parameters
are estimated with (12), (14), and the median value of the
measured intervals ∆T i

on,k and ∆T i
off,k shown on the top of

Fig. 1, for two different values of ȳi
min. This test shows a

good matching between the falling (resp. raising) edges of
pi(tk) and the fact that the virtual temperature yi(tk) reaches
coherently the value of ȳi

min (resp. 1), with a good precision.
It can be further noted that the choice of ȳi

min does not affect
the duration of the charge-discharge cycle. Thus, model (1),
if correctly initialized enables the prediction the future TCL
power consumption.

B. Hybrid Virtual Temperature Observer

Here it is presented an observer enabling the estimation of
the virtual temperature yi(tk) on the basis of the measurement
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TABLE I: Description of discrete events of the hybrid virtual temperature observer depicted in Fig. 2

Events Triggering conditions Effects on continuous states

Eoff
(
si(tk−2) = 1

)
∧
(
si(tk−1) = 1

)
∧
(
si(tk) = 1

)
∧
(
ui(tk−1) = 1

)
∧
(
ui(tk) = 0

)
yi(tk) := yi

max , T i
r := 0

Eon
(
si(tk−2) = 1

)
∧
(
si(tk−1) = 1

)
∧
(
si(tk) = 1

)
∧
(
ui(tk−1) = 0

)
∧
(
ui(tk) = 1

)
yi(tk) := yi

min , T i
r := 0

Timeout T i
r ≥ T̄ i

r none

Out of Bound 1 yi(tk)< β1 · yi
min yi(tk) := β1 · yi

min

Out of Bound 2 yi(tk)> β2 · yi
max yi(tk) := β2 · yi

max

Fig. 2: Local hybrid virtual temperature observer.
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Fig. 3: Tests of the observer on a real water heater operating
autonomously. Top: actual discrete observer state and thermo-
stat state. Bottom: actual estimated virtual temperature.
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Fig. 4: Tests of the observer on a real water heater operating
under the execution of the proposed DSM strategy. Top: actual
discrete observer state and thermostat state and SPS switch
state. Bottom: actual estimated virtual temperature.

of power consumption which is related to the thermostatic
control input to the system. The proposed observer thus
estimates yi(tk) based on its open-loop dynamics, previously

identified, and discrete events related to changes in the state
of the thermostatic control which periodically reset to zero its
estimation error.

The block diagram of the proposed observer is shown in
Fig. 2. It consists of a hybrid system with a continuous state
yi(tk) representing the estimated virtual temperature, a timer
T i

r (tk), and two discrete states, referred as “Reliable Estimation
state” (RE) and “Unreliable Estimation state” (UE).

This distinction has been introduced to provide robustness
on the estimation process.

The “reliable estimation” (RE) state identifies a state where
the power consumption of the device is in agreement with the
identified open-loop dynamics of the virtual temperature and
therefore an estimation of the internal state of the TCL can be
carried out based on the model.

The “unreliable estimation” (UE) state identifies a state
where the measured power consumption does not agree with
the predicted consumption and therefore the open-loop TCL
dynamics can not be used to carry out an estimation of the
virtual temperature because significant and unknown perturba-
tions to its temperature occurred. The “unreliable estimation”
state ends only when the event Eoff is observed and the actual
state of the device can be inferred exactly, thus changing the
state to a “reliable estimation” state and enabling a prediction
of future power consumption.

In fact, since both si and ui play the role of inputs in
(1), and wi is unknown, no robust state feedback asymptotic
observation strategies can be designed, and only open-loop
estimation can be performed. Let ∧ be the “and” logical
operator, the events between the discrete states and their
set/reset effects on yi(tk) and T i

r are listed in TABLE I.
At initialization, the observer is set to the UE state. By (2)

and (3), whenever the TCL “autonomously” changes state
from ui(tk−1) = 1 to ui(tk) = 0, thus without the switch to
zero of si(tk), it can be inferred that T i(tk) has reached T i

max
which corresponds to yi(tk) = 1. Similarly, when it changes
autonomously from ui(tk−1) = 0 to ui(tk) = 1, yi(tk) = ȳi

min. In
accordance with TABLE I these events are “Eoff” and “Eon”.

We further refer to these events as “synchronization events”
because, whenever triggered, the estimated virtual temperature
is set to the corresponding correct value, thus resetting to
zero any estimation error due to uncertainties or exogenous
perturbations.

From the UE state, whenever “Eoff” is triggered, the current
estimation of yi(tk) is reliable and will remain so until an “Out
of Bound” or a “Timeout” event occurs. The “Out of Bound”
event is introduced to detect that the occurrence of a significant
temperature drop wi(tk) on (1), e.g. due to the cold water
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refill on a water heater after an hot-water drain event. This
event is triggered whenever the estimated temperature exceeds
its bounds by certain percentage due to an unexpected TCL
consumption, which literally brings yi(tk) out of its bounds.

The “Timeout” event accounts parameters uncertainties,
long term drifts on T i

∞, or the cumulative effects of not
significant in the small term exogenous perturbations wi(tk).

This event is triggered whenever the timer T i
r measures that

an interval of time greater than T̄ i
r has passed since the last

synchronization event. The “Timeout” event is needed because
in between synchronization events the estimation of the virtual
temperature is open loop, thus we set the observer to the UE
state if no synchronization events occur within a maximum
time window. T̄ i

r is experimentally set equal to 3∆T i
off.

Finally, notice that when the event “Eon” is triggered from
the UE state, the new value of the estimated virtual tempera-
ture is considered to not be reliable because the temperature
might be much lower T i

min due to perturbations wi(tk).
Remark 4.3: Detection of the events “Eon” and “Eoff”

depends on the most recent two states s(tk−1) and s(tk−2) of the
SPS switch and the value of ui(tk−1), to discriminate whether
ui(tk) changed state due to the TCL control logic (3), or by
the SPS due to (2). �

Experimental validation: In Fig. 3 and Fig. 4, the proposed
observer is tested on two real domestic water heaters with
parameters identified in accordance with Subsection IV-A,
ε i

n = 5W, β1 = 0.8 and β2 = 1.2 and influenced by hot water
drawing. In Fig. 3 the TCL is operating with si(tk) = 1, ∀ tk.
We can observe that the virtual temperature estimation is reli-
able, from the first falling edge on ui(tk) up to ≈ 210min. On
the contrary, at around 210min due to hot water consumption
and cold water refill, the observer detects an “Out of Bound
2” event. Then, it switches to the UE state while saturating
yi(tk). At around 250min, “Eoff” is triggered and the observer
sets itself back to the RE. From ≈ 250min to ≈ 350min, the
observer is on the RE state. In this case estimation errors seem
higher since ui(tk) switches ON earlier than the expected time
(≈ ∆T i

off). This is due to cold water refilling the tank and heat
exchange in fluids occurring by convection currents [18], not
modeled in neither (1) nor in (11). However, since events Eo f f
and Eon reset yi(tk) to the correct value, the estimation error
in the RE state is kept small and bounded.

In Fig. 4 the response of the observer during the execution
of the proposed DSM strategy during the experimental test
described in Section VI, validating the observer also when the
SPS is actuates the TCL with the DSM strategy.

C. Mixed Logic Dynamical modeling of TCL-plus-SPS agents

To enable numerical control and optimization, the con-
strained hybrid dynamics of the i-th TCL and SPS are written
as a Mixed Logical Dynamical (MLD) system, i.e., as a set
of mixed integer linear inequalities, denoted χ i(tk).

Let us consider the identified dynamics of the virtual
temperature (11), and let Ai = e−ᾱ i∆τ and Bi = η̄ i(1− e−ᾱ i∆τ).
Similarly, following the notation in (9), let us define

ui(tk) =
[
ui

1 · · ·ui
` · · ·ui

L
]ᵀ

=
[
ui(tk+1) · · ·ui(tk+L)

]ᵀ
yi(tk) =

[
yi

1 · · ·yi
` · · ·yi

L
]ᵀ

=
[
yi(tk+1) · · ·yi(tk+L)

]ᵀ (15)

which entries denote the control input and the virtual temper-
ature over the prediction horizon from time tk+1 to tk+L.

From (11) it yields yi
1 = Aiyi(tk)+Biui(tk). Thus, the pro-

file of the virtual temperature from time tk+2 to time tk+L,
evaluated at time tk, as function of ui(tk), is

yi
2

yi
3
...

yi
L

=


Bi 0 · · · 0

AiBi Bi · · · 0
...

. . .
AL−2

i Bi AL−3
i Bi · · · Bi


︸ ︷︷ ︸

Fi


ui

1
ui

2
...

ui
L


︸ ︷︷ ︸
ui(tk)

+


Ai
A2

i
...

AL−1
i


︸ ︷︷ ︸

Gi

yi
1. (16)

For completeness sake, by noting that yi
1 is fully determined

by ui(tk) and yi(tk) which are not decision variables in the
interval [tk, tk +∆τ), according to (16), it holds

yi(tk) =
[

0 0
0 Fi

][
0

ui(tk)

]
+

[
1

Gi

]
(Biui(tk)+Aiyi(tk)). (17)

Let us now discuss how to model the hybrid agent behavior
due to (2)-(3) into a set of linear integer constraints, such that
each si

` in (9), and each ui
` in (17) are coordinated to safely

maintain each yi within its operating range. First, we define

gi
` , yi

`− yi
min,

f i
` , yi

`− yi
max.

(18)

Clearly, gi
` ≥ 0 implies yi

` ≥ yi
min and f i

` ≥ 0 implies yi
` ≥ yi

max.
Let us define the logical connectives “∧” (and), “∨” (or), “∼”
(not), → (implies) and ↔ (if and only if), see [19] for details.

The value of yi
` with respect to its bounds is now uniquely

associated to two boolean dummy variables δ i
1,`, δ i

2,`, as

[δ i
1,` = 1]↔ [gi

` ≤ 0], (19)

[δ i
2,` = 1]↔ [ f i

` ≤ 0]. (20)

If, for instance, yi
` ∈
(
yi

min,y
i
max
]

then δ i
1,` = 0 and δ i

2,` = 1.
Now, on the basis of (2)-(3), particularized for tk+`, a truth

table of ui
` with respect ui

`−1, si
` and δ i

1,`−1, δ i
2,`−1 is computed.

From that, the next equivalent logical statements have been
derived

[si
` = 0]→ [ui

` = 0], (21)
[δ i

1,`−1 = 0]∧ [ui
`−1 = 0]→ [ui

` = 0], (22)

[δ i
1,`−1 = 0]∧ [δ i

2,`−1 = 0]→ [ui
` = 0], (23)

[si
` = 1]∧ [ui

`−1 = 1]∧ [δ i
2,`−1 = 1]→ [ui

` = 1], (24)

[si
` = 1]∧ [δ i

1,`−1 = 1]→ [ui
` = 1]. (25)

Due to space limitations, the intermediate steps involved for
their evaluation are not provided. They can, however, be found
in the archival version of this paper available online (see [20]).

Although (24)-(25) force ui
` = 1, if yi

`−1 < yi
min (δ i

1,`−1 = 1),
to enable the TCL to be ON, a constraint enabling the power
supply to the TCL by means of si

` = 1 is necessary, as follows

[δ i
1,`−1 = 1]→ [si

` = 1]. (26)

Let us now translate the constraints (19)-(26) to the desired
set of linear inequalities χ i(tk). Firstly, note that the virtual
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temperature vector yi(tk) is bounded element-wise, thus (18)
admits minimum and maximum points defined as follows

mi
f = min

`=1,...,L
f i
`, mi

g = min
`=1,...,L

gi
`,

Mi
f = max

`=1,...,L
f i
`, Mi

g = max
`=1,...,L

gi
`.

(27)

Then, by invoking [19, Properties (2d) and (4e)], the logical
implications in (19)-(26) can be formulated, for each ` =
1, . . . ,L, as the next set of linear mixed integer inequalities

(19) ≡
{

gi
` ≤ Mi

g · (1−δ i
1,`)

gi
` ≥ mi

g ·δ i
1,`

(28)

(20) ≡
{

f i
` ≤ Mi

f · (1−δ2,`)

f i
` ≥ mi

f ·δ2,`
(29)

(21) ≡ si
` ≥ ui

` (30)
(22) ≡ ui

` ≥ δ1,`−1 +ui
`−1 (31)

(23) ≡ ui
` ≥ δ1,`−1 +δ2,`−1 (32)

(24) ≡ ui
` ≥ si

`+ui
`−1 +δ2,`−1−2 (33)

(25) ≡ ui
` ≥ si

`+δ1,`−1−1 (34)
(26) ≡ si

` ≥ δ1,`−1. (35)

Now, since the estimation on yi(tk) needed to initialize (15)
is provided by the open-loop observer in Fig. 2 under uncertain
and possibly perturbed conditions, and because the occurrence
of the synchronous events is preferred since they reset the
estimation error, the introduction of a constraint which forces
the SPS switch to be ON for at least a minimum fraction Si

%,on
of the receding horizon time-window τ(tk) is included,

L

∑
`=1

si
` ≥ L ·Si

%,on , Si
%,on ∈ [0,100]. (36)

Thanks to (36), the occurrences of synchronization events
Eon and Eoff in the hybrid observer is greater and thus its
corresponding estimation is reliable more often, improving
the performance of the overall control architecture. In our
setup Si

%,on = 0.6. Set Si
%,on = 1 makes agent i not cooperative,

even if its expected consumption will be counterpart on the
aggregated expected demand in (8) to be optimized.

Finally, by combining (16), and (28)-(36) with `= 1, . . . ,L,
we get the set of local MLD constraints χ i(tk) associated to
each agent i in the optimization of the functional (7).

Definition 4.4 (Local constraint set χ i(tk)): The SPS sched-
ule plan si, by each agent i is constrained by the set of
mixed linear inequalities χ i(tk), which includes inequalities
from (28) to (36) and the equality (16) with the addition of
si
`,u

i
`,δ

i
1,`,δ

i
2,` ∈ {0,1} and yi

` ∈ R+ for `= 1, . . . ,L. �

The set χ i(tk) consists of 1+ 11L linear inequalities and
5L variables. Only the L elements of si(tk) in (9) are control
variables, consisting on the actual planning for the SPS switch;
si

1 denotes the switch command to be actuated at tk+1.

D. Protocols for Dynamic Average Consensus

One of the key ideas of the proposed architecture is to ex-
ploit local interaction protocols for dynamic average consensus
to enable each agent to estimate online the profile of the time-
varying future planned global average power consumption P̀

in (8) of the TCLs. The estimation computed at time tk of the
average power consumption at time tk+` = tk + `∆τ , is

P̄̀ (tk) =
1
n
· P̀ (tk) =

1
n ∑

i∈V
pi
`(tk) =

1
n ∑

i∈V
pi ·ui

`, `= 1, . . . ,L, (37)

where pi
`(tk) = pi · ui

`(tk) is the power consumption plan of
the i-th agent, available at time tk. In the reminder pi

`(tk) is
considered as the local time-varying reference input of each
agent that executes the dynamic consensus algorithm.

In particular, let P̄i
`(tk) be the estimation at time tk of the

average power consumption P̄̀ (37) expected at time tk+` =
tk + `∆τ , by agent i. To distributedly estimate P̄̀ , for each
time-slot ` over the receding horizon window τ(tk), L local
instances of dynamic average consensus algorithm are needed.
Here, the generic dynamic consensus updated rule is denoted
as

P̄i
`(t +dt) = D Consensus Update(P̄ j

` (t)| j∈N i , P̄i
`(t), pi

`(tk)), (38)

where dt is time required to execute an iteration of (38)
according to the network capabilities. Due to space limita-
tions, implementation details on (38) are omitted. The reader
is referred to [21] for a comprehensive treatment of the
topic. Roughly speaking, each agent updates its estimation
P̄i
` through local interaction within its neighborhood N i,

by exchanging their local estimation P̄ j
` . Among the many

existing dynamic consensus algorithms, e.g. [22], [23], [24],
[25], [26], we adopted the solution proposed in [24] because:
• it can be easily tuned to achieve a desired trade-off

between steady error and maximum tracking error;
• it is robust to re-initialization due to changes in the

network topology or size;
• it can be implemented with randomized asynchronous

state updates, thus it is resilient against communication
failures or agent logout during the algorithm execution.

The performance of the dynamic consensus can be evaluated
in terms of the maximum tracking error with respect to the
average of the reference signals

etrack(t) = max
i∈V

∣∣∣P̄i
`(t)− P̄̀ (t)

∣∣∣= max
i∈V
|ξ i
`| ≤ ξ , (39)

and its convergence rate, which can be improved by increasing
the number of iterations per second. In our scenario the
timescale dt of the iterations of the dynamic consensus is in
the range of the milliseconds.

Remark 4.5: The adopted dynamic consensus algorithm,
proposed in [24], requires a communication topology repre-
sented by a connected undirected graph and bounded exoge-
nous reference signals as working assumptions. It achieves a
bounded maximum tracking error, characterized in [24]. The
randomized version of dynamic average consensus in [24]
considers a time-varying graph G(tk) which consists at each
instant of time of a set of random edges selected from a
connected undirected graph. �

V. TCL COOPERATION PROTOCOL

We now present the TCL Cooperation Protocol, detailed in
Algorithm 1, which enables cooperation among the TCLs by
minimizing the global objective (7) under the local constraints
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χ i(tk) derived in Subsection IV-C. These constraints uniquely
determine ui

` for `= 1, . . . ,L, as function of the only decision
variable, the SPS switch state planning si

`. This on the basis
of the current virtual temperature estimation yi(tk) obtained
by the local observer, the current boolean state of the TCL
ui(tk), the system parameters identified with the method in
Subsection IV-A, and the estimation on the average TCL
power consumption profile of the network P̄̀ (tk) in (37),
predicted via dynamic average consensus.

Algorithm 1 TCL Cooperation Protocol
Algorithm’s Parameters:

dt: Maximum execution time of a dynamic consensus update;
∆t: Maximum execution time of the local optimization;
∆τ: Time length of an optimization time-slot;
L: Number of time slots of the time window horizon;
τ(tk) = L ·∆τ: Optimization’s receding horizon time window;
ξ : maximum tracking error of dynamic consensus algorithm;
ε: small positive constant;
µi: probability of execution of a local optimization;

Algorithm Inputs:
pi(tk): Measured local TCL power consumption;
yi(tk): Estimated virtual temperature;
Obs State(tk) = {UR,RE}: Observer discrete state;

Algorithm Outputs:
si(tk) = [si

1 · · ·s
i
L]
ᵀ ∈ {0,1}L: Local SPS scheduling plan;

ui(tk) = [ui
1 · · ·u

i
L]
ᵀ ∈ {0,1}L: Local TCL scheduling;

pi(tk) = pi ·ui(tk): Local Expected power consumption;
Initialize counter: k = 0;
Each agent i executes in parallel the next tasks:
• Task (a). Every dt seconds:

1. Gather P̄ j
` for `= 1, . . . ,L, from neighbors j ∈N i(tk);

2. Update state variables P̄i
` for `= 1, . . . ,L, according to (38);

• Task (b). Every ∆t seconds:
1. Update the measurement of power consumption pi(tk);
2. Update the state of the virtual temperature observer and

collect the virtual temperature yi(tk);
3. If Obs State(tk) = {RE} then, with probability µi update the

ON/OFF scheduling according to an approximate solution of the
next problem by a time-constrained (∆t) heuristic:

[si,?,ui,?] = argminsi∈χ(tk) Ji(tk) = ∑
L
`=1 Pi

`piui
`

Ji,? = ∑
L
`=1 Pi

`piu
i,?
` .

(40)

If a solution [si,?,ui,?] is found within ∆t seconds and

|Ji(tk)− Ji,?|= γi ≥
ξ pi

L

L

∑
`=1
|ui,?
` −ui

`|+ ε, (41)

then set si(tk) := si,? , ui(tk) := ui,?

Endif
else si(tk) := si(tk), ui(tk) := ui(tk), i.e., do nothing.
Endif
• Task (c). Every ∆τ seconds:

1. Set the current SPS state equal to: si(tk+1) := si
1(tk);

2. Shift the receding horizon time window by ∆τ:

ui(tk+1) :=
[
ui

2(tk) · · · ui
`(tk) · · · ui

L−1(tk) 1
]ᵀ ; (42)

si(tk+1) :=
[
si
2(tk) · · · si

`(tk) · · · si
L−1(tk) 1

]ᵀ ; (43)

Let k := k+1
Endif

The “TCL Cooperation Protocol”, consists of a local state
update rule executed by each agent indefinitely. Each agent

owns a local prediction P̄i
` of the future average TCL power

consumption of the network over the horizon τ(tk).
From Task (a) of Algorithm 1, each agent updates its pre-

diction P̄i
` of P̄̀ by executing in (38) the multi-stage dynamic

consensus algorithm [24]. In parallel, and following Task (b)
of Algorithm (1), each agent attempts to minimize, with
probability µ , the local objective (40), consisting of the local
SPS switch scheduling weighted by the predicted average TCL
power consumption of the network over τ(tk), subject to the
local constraints χ i(tk). Notice that, the set χ i(tk) is not only
non-convex because it includes integer variables, but also time-
varying because it depends upon the current state of the TCL
at the time in which the optimization takes place.

Although the optimization problem in (40) is in general NP-
hard due to mixed integer linear programming, in our setting
for each agent i the number of variables to be optimized is
relatively small as only local constraints over a short time
horizon τ(tk) are involved. For example, about 20/60 steps
into the future may account for 30 minutes to two-three hours
of operations, depending on the tuning of the algorithm. Thus,
the complexity of Algorithm 1 does not increase with the
size of the network, but only with respect to the size of
the time horizon L. This can be shown by noticing that the
local optimization executed by each agent involves only its
own state and its own prediction on the averaged aggregated
consumption while cooperation with other agents is achieved
only through the execution of the dynamic consensus protocol
which is designed for large scale networks.

It should be noticed that approximate solutions to local
optimization problems are sufficient to execute the heuristic.
Here, a standard branch and bound solver with a limited
maximum execution time has been considered. If a given
solution does not improve on the current scheduling, it is
simply discarded and the existing scheduling is kept out until a
better one is found in future iterations. In Section VI numerical
simulations and experiments carried out for our case study are
also discussed.

A. Convergence analysis

First, we note that a feasible solution to the local op-
timization problem (40) always exists and such solution is
si(tk+`) = 1, for ` = 1, . . . ,L, which corresponds to the SPS
switch always ON. This can be easily proven by verifying that
all MLD constraints are always satisfied by such solution.

Let J+(tk) be the value of the global objective J(tk) in
(7) after one agent updates its own local control action si(tk)
during the execution of Task (b) of Algorithm 1.

Theorem 5.1: [Online Optimization]
Consider a network of TCL-plus-SPS executing Algo-

rithm 1. If the dynamic consensus algorithm (38) executed
in Task (a) of Algorithm 1 has maximum tracking error (39)
less than ξ , and inequality (41) holds, then the global objective
value decreases by

J+(tk)≤ J(tk)−nε. (44)

where ε > 0 is a small constant and n is the number of agents.
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Proof: The global objective to be optimized online is

J(tk) =
1
L

L

∑
`=1

(
∑

i∈V
piui

`

)2

. (45)

Now, the average power consumption estimated by each agent
with the dynamic consensus algorithm (38) has, in general,
a time-varying estimation error ξ i

` with respect to the real
average power consumption P̄̀ in (37), such that

P̄̀ =
∑i∈V piui

`

n
= P̄i

`+ξ
i
`. (46)

Thus, we can rewrite (45) as

J(tk) =
1
L

L

∑
`=1

(
∑
i∈V

piui
`

)(
∑
i∈V

piui
`

)
=

1
L

L

∑
`=1

nP̄̀

(
∑
i∈V

piui
`

)

= n ∑
i∈V

1
L

L

∑
`=1

(
P̄i
`+ξ

i
`

)
piui

`(tk). (47)

Now, by letting Ji(tk) = 1
L ∑

L
`=1
(
P̄i
`+ξ i

`

)
piui

`, it holds
J(tk) = n∑i∈V Ji(tk). Therefore, if exact knowledge of P̄̀ =
P̄i
` + ξ i

` was available to each agent, we could guarantee the
optimization of the global objective function over the non-
convex set of constraints (up to a local minimum) by updating
the local ON/OFF scheduling as

[si,?,ui,?] = argmin
si∈χ(tk)

1
L

L

∑
`=1

P̄̀ piui
`. (48)

Instead, since the agents do not have access to global
information on the network, i.e., they do not have access to
the updated values of P̄̀ during the iterations, an estimation
of P̄̀ is employed. Since we consider a dynamic consensus
process which has bounded tracking error less than ξ , it holds

max
i∈V
|P̄i
`− P̄̀ | ≤ ξ , ∀i ∈V , `= 1, . . . ,L. (49)

During the execution of Task (b) of Algorithm 1, each agent
optimizes its local objective Ji(tk) in (40) on the basis of
its own local estimation on the predicted average power
consumption of the network P̄i

`, i.e.,

J̃i(tk) =
1
L

L

∑
`=1

P̄i
`p

iui
` = Ji(tk)+

1
L

L

∑
`=1

ξ
i
`p

iui
`. (50)

Thus, let

[si,?,ui,?] = argmin
si∈χi(tk)

J̃i(tk) = argmin
si∈χi(tk)

1
L

L

∑
`=1

P̄i
`p

iui
`, (51)

and J̃i,? = 1
L ∑

L
`=1 P̄i

`p
iui,?

` . Now, denote with γi the computed
decrement of the local objective function affected by estima-
tion errors

J̃i,?− J̃i(tk) =−γi. (52)

We now compute a sufficient value of γi which guarantees
the optimization of the global objective despite persistent
estimation errors. An actual decrement of the local objective
after one agent executes Task (b) of Algorithm 1 is obtained if

Ji,?(tk)− Ji(tk)<−ε. (53)

(a) A Raspberry Pi Zero W
and a WeMo Insight Switch.

(b) A Water heater equipped
with a WeMo Insight Switch.

 

Workstation

(public IP)

Home 1

Home 2

Home 3

(c) CoNetDomeSys testbed’s cyber-physical infrastructure.

Fig. 5: The infrastructure behind the CoNetDomeSys testbed.

By rewriting (52) and substituting J̃i(tk) by exploiting (50),

Ji,?(tk)− Ji(tk) =−γi +
1
L

L

∑
`=1

ξ
i
`pi(u

i,?
` −ui

`). (54)

Then, by putting together the inequalities in (53) and in (54),
it follows that to ensure (53), it suffices that

γi >
1
L

L

∑
`=1

ξ
i
`pi(u

i,?
` −ui

`)+ ε. (55)

By considering an upper bound to the estimation error ξ i
`

by exploiting (49), it holds |ξ i
`| ≤ ξ for all ` = 1, . . . ,L, and

for all i ∈V . Thus, we can rewrite (55) as the next inequality

γi >
ξ pi

L

L

∑
`=1
|ui,?
` −ui

`|+ ε. (56)

Therefore, if (56) holds, the global objective function J+(tk)
after one agent executes Task (b) of Algorithm 1 is

J+(tk) = n

((
∑

j∈V\i
J j(tk)

)
+ Ji,?

)
(57)

and decreases, with respect to its value before the local update,
by at least

J+(tk)< n

((
∑

j∈V\i
J j(tk)

)
+ Ji(tk)− ε

)
= J(tk)−nε (58)

thus proving the statement of Theorem 5.1. �

VI. TESTBED DESCRIPTION AND EXPERIMENTS

The “CoNetDomeSys” testbed, short for “Cooperative Net-
work of Domestic Systems”, is a low cost IoT-oriented ex-
perimental demonstrator for fast prototyping and testing of
DSM algorithms on large populations of domestic appliances
controlled and monitored by means of SPS plug adapters.
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The testbed is designed around off-the-shelf low-cost hard-
ware components. The only requirement is having internet
Wi-Fi facilities. Its core component is the WeMor Insight
Switch [27] shown in Fig. 5a. The choice of which was
dictated by the availability of Open-APIs to integrate purpose-
built software, thus enabling remote monitoring and control.
It is a 220V/16A/50Hz power outlet adapter provided with
• a power consumption sensing unit with rated resolution of

1mW and tested maximum sampling frequency of 1Hz;
• a latching switch to remotely/manually enable the power

supply to the appliance plugged within its power outlet;
• a controller with WiFi 2.4GHz 802.11n capabilities.
A number of SPSs were delivered to volunteers in the city of

Cagliari (Italy) who agreed to participate to this experimental
campaign. A domestic TCL is plugged into each SPS as
shown, e.g., in Fig. 5b. In each domestic environment, a
Raspberry Pi Zero W [28], shown on the left of Fig. 5a, is also
connected to the same LAN where the SPSs are connected to.

Two Java™ software applications were also developed: one
installed on each Raspberry Pi Zero W and implementing a
client-server communication and control infrastructure over
the Telnet protocol for the SPSs; one installed in a workstation
with public IP address located in our laboratory.

The application running on the Raspberry, for each SPS
within the same LAN, queries the measured consumption
pi(tk) while enabling the control of the switch si(tk). Then,
it forwards measurements/receives control commands to/from
the workstation. In Fig. 5c the testbed’s cyber-physical infras-
tructure is pictured.

The workstation application collects the received data from
the population of SPSs, and send back asynchronous actuation
commands. It is also integrated with a MATLABr interface
for fast prototyping of distributed coordination algorithms.
Both communication and actuation delays are below 1sec.

A network topology is assigned to the agents and each can
only share information anonymously with its neighbors. The
topology and size of the network is unknown to the agents.

The workstation is a Dell Precision t5810 equipped with an
Intelr Xeonr E5-1620 v3 (10M Cache, 3.50 GHz), 64GB of
RAM, and Windows 10 Pro installed.

The processing carried out by the testbed is centralized
and takes place in a single workstation. Therefore, the testbed
validates experimentally the responsiveness to the DSM of the
TCLs while to enable fast distributed algorithm prototyping
and testing, in the MATLABr environment, the processing
and communications among agents are simulated via software.

A. Parameters and setting of the experimental scenario

To validate the proposed approach on the CoNetDomeSys
testbed a small scale scenario involving domestic TCLs located
in a set of private homes of volunteers has been considered.

To limit the number of volunteers required to carry out
the test, while executing the DSM cooperation strategy on a
network of at least 100 agents, a set of numerically simulated
TCLs equipped with SPS, modelled accordingly with (1)-(4),
is also considered. In particular, we had access to 12 electric
water heaters and 3 electric radiators in 10 different locations.

TABLE II: Test parameters

# TCL ᾱ i [s−1] η̄ i [−] pi [kW]

12 Water Heater (0.3÷5.3)×10−4 6.17÷48.25 1.2÷1.5

3 Radiator (1.5÷3.5)×10−3 1.6÷5.5 1.2,2.0

85 Simulated TCL (1.3÷2.4)×10−4 21÷25 1.0÷2.0

Then, we introduced 85 numerically simulated agents with
parameters identified from other real TCLs involved in the
experiment, thus yielding a total population of n = 100 agents.

The parameters of each TCL were identified with the
method described in Subsection IV-A and by letting, for all
agents, the free parameter ȳi

min = 0.5. The list of parameters
used for the tuning of model (11) is provided in TABLE II.

In our scenario we considered a peer-to-peer network
topology represented by a random undirected Erdös-Rényi
graph G(V ,E), with edge existence probability 3 log(n)/n.
Tests were carried out in real-time, and in accordance with
Algorithm 1, the time-related parameters were set as:
• Task (a), dynamic consensus: dt = 10msec;
• Task (b), local optimization: ∆t = 1sec;
• Task (c), SPS actuation time slots: ∆τ = 1min.
A receding horizon time window τ(tk) of 40min was chosen,

thus L = 40 time slots with length ∆τ = 1min each. The
probability of executing the local optimization every ∆t on
each device was set to µ i = 1/30 for all agents. The expected
number of local optimization rounds (40), executed by each
agent in one time-slot ∆τ , is µ i∆τ∆t = 2.

Local optimization problems were solved with the
MATLABr MILP solver “intlinprog”. The solver is set
to use a time-constrained “Branch and Bound” search with
maximum execution of 5sec. The average time to execute an
optimization was about 0.03sec. In the large majority of cases
optimal solutions were found within the time limit.

In our test with 100 agents we considered a time span of
550min (≈ 9 hours). Numerically simulated TCLs and SPS
were given random initial conditions with virtual temperature
yi(t0) in the interval [0.5,0.7], and si(t0) = 1, and hi(t0) = 0.

This ensured a scenario, referred as “autonomous case”
where, if no DSM strategies are executed on the SPSs (thus
si(tk) = 1, ∀ tk ∈R+), about 90% of the simulated TCLs would
need to turn ON their heating element within the first 25min of
the experimentation, thus showing as highlighted by the dotted
power consumption profile of Fig. 6, significant peaks. Clearly,
a DSM strategy able to desynchronize the consumption of the
TCLs, in spite of their local temperature constraints, and in the
absence of any absolute temperature information is needed.

Experimental validation: In contrast with the “au-
tonomous case”, the scenario where the network of SPSs
executes Algorithm 1, is referred as “cooperative case”. A
comparison between the actual power consumption by the
considered network of 100 mixed TCLs (15 real and 85
simulated) in the two cases is shown in Fig. 6. The details
of the behavior of the first 8 simulated TCLs is shown in
Fig. 7.

In spite of the adverse agent’s initialization, the same in
both case studies, the actual power consumption associated
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Fig. 6: Comparison between the power consumption of 100
TCLs in the autonomous case and in the cooperative case in
the mixed scenario (16 real TCLs).
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Fig. 7: Comparison between the power consumption of 8
simulated TCLs in the autonomous case and the cooperative
case. The state of each TCL is in different colours.
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Fig. 8: Evolution of virtual temperature yi(tk), SPS state si(tk),
and TCL state ui(tk) of one agent in Algorithm 1.

with the “cooperative case” is shaved off with respect to the
“autonomous case”. In particular, from the bottom plots of
Fig. 7, it can be noted that, compared with the “autonomous
case” (left), in the “cooperative case” (right) the discrete state
of each TCL ui(tk) switches with increased frequency, while
maintaining, in accordance with Remark 3.2, similar average
power demand.

In Fig. 4 and in Fig. 8 are depicted, respectively for a real
TCL and for a simulated one, the details of the evolution of
the discrete state of the SPS and TCL with the corresponding
virtual temperature during the execution of Algorithm 1.

It can be seen that the switch of the SPS is mostly in the ON
state accordingly with (36), where Si

%,on = 0.6. Thus, there is
no significant issue neither due the excessive switching of the
electro-mechanical switch (which might reduce the lifespan of
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Fig. 9: Comparison of the predicted averaged consumption P̄i
`

by agent i = 1, `= 1, . . . ,40, at time t1 and time t1 +∆τ .
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Fig. 10: Comparison of the predicted averaged consumption
P̄i
` by agent i = 1, `= 1, . . . ,40, at time t5 and time t5 +∆τ .
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Fig. 11: Evolution of the global objective function during the
execution of the DSM strategy at different intervals of time tk.
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Fig. 12: Energy consumption profiles, integrated in a 150 min
time window, in the autonomous case and cooperative case.

the SPS), nor with respect to the presence of estimation errors
on yi(tk), which are promptly reset to zero by the observer
at each occurrence of the events Eon, or Eoff. This is evident
in Fig. 4, where temperature drops due to user behavior are
present.

From the above discussion, we conclude that the proposed
strategy ensures peak consumption reduction and promotes, in
general, the desynchronization of the TCLs power consump-
tion.

In Fig. 9 a comparison between the predicted average power
consumption P̄i

`, for `= 1, . . . ,40, estimated with the dynamic
consensus algorithm in (38) by agent 1 at two different instants
of time, at t1 = 1min and at t2 = t1 +∆τ = 2min by which
time each agent is expected to have solved (40) at least twice
in accordance with the chosen value of µ i, is shown. The same
comparison is also evaluated at t5 = 5min and at t6 = 6min in
Fig. 10.

It can be seen that major changes in the predicted power
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consumption by the network occur mostly during the start-
up phase, since the agents are initialized in a such way that
their power consumption is synchronized. Then, after the time-
window τ(tk) recedes by a few time-slots, the network reaches
a steady solution for its average consumption where only small
changes occur in the local schedule plans.

The tests shows that even a few iterations of Task (b)
of Algorithm 1 are sufficient to significantly improve the
global objective, i.e., reduce peak demand and load variations.
Since the approach is real-time and based on feedback, errors
due to local TCL parameter uncertainty and estimation errors
are mitigated and averaged within the whole network, thus
providing robustness.

In Fig. 11 it is shown a validation of the result in Theo-
rem 5.1. It shows that the execution of the TCL cooperation
protocol with randomized local optimizations, i.e., Task (b) of
Algorithm 1, provides a decrement on the global objective (7)
despite estimation errors and real dynamical evolution of the
TCLs.

Finally, in Fig. 12 it is shown a comparison between the
energy consumption profiles, integrated within a 150 min time
window, with the TCLs in autonomous operation and during
the execution of the TCL cooperation protocol. It can be seen
that as a by-product of the proposed cooperation strategy,
also total power consumption by the network is reduced, thus
realizing energy savings. This occurs because the modulation
of the ON/OFF state of the TCLs forces their temperature to
be closer to the lower limit of the desired temperature range
[T i

min,T
i

max] thus reducing thermal losses with respect to the
ambient temperature. The linear growth of the cooperative
case in Fig. 12 is explained by the almost uniform and constant
power consumption integrated over time that our method is
able to achieve, thus yielding an almost linear growth in the
experimental case study.

VII. CONCLUSIONS

In this paper we presented: i) a multi-agent DSM architec-
ture for the coordination of anonymous networks of TCLs,
not tailored for DSM task, enabled by the use of SPSs; ii) a
method for power consumption model identification of TCLs
based only on power consumption measurements; iii) A hybrid
observer for the estimation of the TCL internal state based
only on consumption measurements; iv) a method for dis-
tributed online constrained optimization method of the power
consumption of a network of TCLs controlled by SPSs; v) a
low-cost experimental testbed based on off-the-shelf hardware
along with a dedicated software; vi) an experimental validation
of the proposed method.

Future work will build upon the proposed architecture by
generalizing to Virtual Power Plants.
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