
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON CYBERNETICS 1

Rigidity-Preserving Team Partitions in
Multiagent Networks

Daniela Carboni, Ryan K. Williams, Student Member, IEEE, Andrea Gasparri, Member, IEEE,
Giovanni Ulivi, Member, IEEE, and Gaurav S. Sukhatme, Fellow, IEEE

Abstract—Motivated by the strong influence network rigidity
has on collaborative systems, in this paper, we consider the prob-
lem of partitioning a multiagent network into two sub-teams, a
bipartition, such that the resulting sub-teams are topologically
rigid. In this direction, we determine the existence conditions for
rigidity-preserving bipartitions, and provide an iterative algo-
rithm that identifies such partitions in polynomial time. In
particular, the relationship between rigid graph partitions and
the previously identified Z-link edge structure is given, yielding
a feasible direction for graph search. Adapting a supergraph
search mechanism, we then detail a methodology for discern-
ing graphs cuts that represent valid rigid bipartitions. Next,
we extend our methods to a decentralized context by exploiting
leader election and an improved graph search to evaluate feasi-
ble cuts using only local agent-to-agent communication. Finally,
full algorithm details and pseudocode are provided, together
with simulation results that verify correctness and demonstrate
complexity.

Index Terms—Distributed robot systems, graph rigidity,
networked robots.

I. INTRODUCTION

COORDINATED autonomous systems continue to
demand strong attention from researchers, particu-

larly within recent years. The driving force of this surge
is the increasing promise of multiagent systems in real-
ity, a product of rapid advancements in computation and
communication, and the implications that collaborative
systems have for impactful applications. Examples range
from base behaviors such as tracking and coverage [1]–[3],
formation control [4], [5], and state consensus [6], [7],
synchronization and optimization [8], [9], to higher-level

Manuscript received June 2, 2014; revised October 23, 2014; accepted
December 3, 2014. This work was supported in part by the Italian Grant
FIRB Futuro in Ricerca, project NECTAR, code RBFR08QWUV, the Italian
Ministry of Research and Education (MIUR), and in part by the ONR MURI
Program under Award N00014-08-1-0693, in part by the National Science
Foundation (NSF) CPS program under Grant CNS-1035866, and in part by the
NSF under Grant CNS-1213128. The work of R. K. Williams was supported
by a fellowship from the USC Viterbi School of Engineering. A prelimi-
nary version of this paper was presented at the 19th World Congress of the
International Federation of Automatic Control (IFAC 2014). This paper was
recommended by Associate Editor H. M. Schwartz.

D. Carboni, A. Gasparri, and G. Ulivi are with the Department
of Engineering, University of Roma Tre, Roma 00146, Italy (e-mail:
gasparri@dia.uniroma3.it).

R. K. Williams and G. S. Sukhatme are with the Departments of Electrical
Engineering and Computer Science, University of Southern California,
Los Angeles, CA 90089 USA.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCYB.2014.2378552

objectives such as collective transport [10], wireless network
optimization [11], [12], environmental monitoring [13], and
data fusion [14]. Additionally, multiagent systems may yield
significant advantages over single-agent solutions in terms
of heterogeneity of mobility and sensing, fault tolerance and
flexibility, and scalability [15]–[18].

In this paper, we are concerned with identifying two prop-
erties of the graph that describes a multiagent network. First,
given a single team of connected agents, we wish to identify
partitions in the network graph that yield two sub-teams, i.e.,
graph bipartitions or split maneuvers. Partitioning or splitting
a team emerges as an important behavior primitive in navigat-
ing uncertain or cluttered environments by endowing the team
with the flexibility to change in both composition and scale.
Further, network partitioning is compelling in the context of
task assignment (see [19]), as it would enable task-centric
collaboration, allowing for example the decoupling of tasks
across spatiotemporal scales. There is also promise in apply-
ing the team splitting primitive for collective transport [20],
multitarget entrapment or encirclement [21], and multiteam
cooperation [22].

Our second and arguably most important concern is that
each partitioned team is rigid (which also implies connected
sub-teams). Broadly speaking, rigidity represents an impor-
tant requirement when a system demands collaboration. For
example, rigidity guarantees formation stability when only rel-
ative sensing information is available [23]–[25]. Specifically,
the asymptotic stability of a formation is guaranteed when
the graph that defines the formation is rigid by construction.
Thus, in maintaining sub-team rigidity, it becomes possible to
move beyond the classical formation methodology, to that of
dynamic formations, precisely as rigidity can guarantee sta-
bility as the underlying network changes. Sub-teams could
then take on dynamically generated and stable formations
based on the objectives of a given task assignment. Rigidity
is also a necessary (and in certain settings sufficient) con-
dition for localization tasks with distance or bearing-only
measurements [24], [26], [27]. The ability of a network to
self-localize is of clear importance across various application
contexts, and for example in [27], it is shown that if the rigidity
conditions for localizability for traditional noiseless systems
are satisfied, and measurement errors are small enough, then
the network will be approximately localizable. Bipartitions
that are rigidity-preserving are then immediately localization-
preserving as well. Finally, the flavor of rigidity studied here is
also a necessary component of global rigidity [28]–[30], which

2168-2267 c© 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:gasparri@dia.uniroma3.it
http://ieeexplore.ieee.org
http://www.ieee.org/publications_standards/publications/rights/index.html

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON CYBERNETICS

can further strengthen the guarantees of formation stability
and localizability, as the uniqueness of a given topological
embedding is more easily characterized.

The general study of rigidity has a rich history in sci-
ence, mathematics, and engineering [30]–[33]. In [32], com-
binatorial operations are defined which preserve rigidity,
with [23] and [25] extending the ideas to multiagent split-
ting and formation control [34], [35]. In [36], an algorithm is
proposed for generating rigid graphs in the plane based on the
Henneberg construction [32]. Similarly, [37] defines decentral-
ized rigid constructions that are edge length optimal. However,
to our knowledge no previous work has considered the issue
of identifying the conditions for and an algorithmic solution
to rigidity-preserving graph partitioning. There exists work
that considers for example the identification of k-connected
subgraphs (see [38]), however, not from a team splitting or
multiagent perspective. In [23], [25], [39], and [40], certain
rigidity-preserving operations are described, but methodolo-
gies for decentralized rigidity-based partitioning are absent.
Finally, insight into the splitting of rigid teams is given in [41],
however, from the perspective of sub-team connectedness,
which can be seen as complementary to our contributions in
this paper.

Motivated by the collaborative impact of rigidity, we pro-
pose in this paper iterative algorithms that determine the
existence of a rigidity-preserving bipartition of a graph in the
plane, with guaranteed polynomial complexity. While previ-
ous work has provided constructive intuition for rigid splitting
and rejoining (see [23]), instead in this paper, we identify how
to find such partitions and the conditions under which they
will be found. We first provide an analysis of the relationship
between the existence of rigid graph partitions and the topolog-
ical conditions that must then hold, yielding a sound direction
for searching the graph for feasible partitions. In particular,
we determine that for minimally rigid teams, a three-edge
set always preserves sub-team rigidity when it cuts the net-
work graph. This intuition guides us to consider the three-edge
structure termed a Z-link proposed in [23], which possesses a
local structure that is amenable for decentralization. Then, we
reason on determining through graph search, when a candi-
date three-edge set represents a rigidity-preserving bipartition
of the graph. Specifically, exploiting the combinatorial prop-
erties of rigidity, we demonstrate that a classical depth-first
graph traversal is sufficient in making such an identification.
Finally, resting on the local nature of the Z-link, and the
amenability of depth-first search (DFS) to local communica-
tion, we decentralize our methods by exploiting leader election
and a heuristically pruned DFS. Full algorithm details and
pseudocode are provided as well as simulation results and
Monte Carlo analysis that verifies our claims of complexity
and correctness.1

The outline of this paper is as follows. In Section II, we
provide preliminary materials including agent and network
models, a primer on the relevant aspects of rigidity theory,

1We also point out that by iteratively applying our methods, a network
could further split into multiple partitions, although the general problem of
multipartitioning rigid networks is the subject of future work.

and a problem formulation. Theoretical developments and a
centralized algorithm for identifying rigidity-preserving bipar-
titions is presented in Section III, with a full decentralization
then given in Section IV. Simulation results are provided in
Section V, and the conclusion as well as directions for future
work are stated in Section VI.

II. PRELIMINARIES

A. Network and Agent Modeling

Consider a system composed of n agents (e.g., robots)
indexed by I = {1, . . . , n} operating in R

2, each possessing
communication capabilities, denoting by (i, j) a bi-directional
communication link between agents i and j. Note that, in a
networking context every agent possesses a unique ID for the
purposes of communication. Indeed, this will turn out to be
useful for the leader election process in the decentralized ver-
sion of the proposed algorithm. Each agent may or may not
be mobile, depending on the underlying application, and we
simply assume each agent possesses some position xi ∈ R

2,
possibly with time-varying dynamics.

To characterize the interconnected system, we define
undirected graph G = (V, E), having vertices V =
{v1, . . . , vn} associated with each agent i ∈ I, and edge set
E = {(i, j) | i, j ∈ V} with unordered pairs (i, j), where by def-
inition (i, j) ∈ E ⇔ (j, i) ∈ E, ∀ i �= j ∈ I, excluding
the possibility for self loops, (i, i) /∈ E, ∀ i ∈ I. Agents i
and j sharing an edge (i, j) ∈ E are referred to as neigh-
bors, where the set of neighbors for the ith agent is given
by Ni = {vj ∈ V | (i, j) ∈ E}. The undirected2 graph topol-
ogy can be seen as a communication network and a sensing
graph. In our case, the concept of rigidity that we introduce in
the sequel is particularly suited for sensing topologies, specif-
ically as rigidity is necessary in sensing-based objectives such
as formation control and localization. However, we require that
the communication topology coincides with the sensing topol-
ogy so that our decentralized algorithms (Section IV) properly
respect the underlying sensing topology, which we wish to
rigidly partition.

B. Rigidity Theory

A primary concern of this paper is the rigidity property of
the underlying graph G describing the network topology, again
given the fundamental guarantees that rigid graphs provide for
example in both localizability and formation stability of mul-
tiagent systems [25]. We provide a brief overview of rigidity
theory here. We direct the reader to [31], [32], and [42] for
a technical primer on the subject. To begin we require the
notion of a graph embedding in the plane, captured by the
framework Fp � (G, p) comprising graph G together with a
mapping p : V → R

2, assigning to each node in G, a location
in R

2. The natural embedding for us is to assign each node the
position xi associated with each agent, defined by the mapping
p(i) = xi, otherwise known as a realization of G in R

2.

2The concepts of rigidity that we introduce in this paper are formulated only
for undirected communication and sensing. Extension to directed notions of
rigidity is the focus of future work.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CARBONI et al.: RIGIDITY-PRESERVING TEAM PARTITIONS IN MULTIAGENT NETWORKS 3

The rigidity of a graph can be view in terms of infinitesimal
motion of Fp that can be described by assigning to the vertices
of G a velocity ṗi � ẋi ∈ R

2 such that
(
ẋi − ẋj

) · (xi − xj
) = 0, ∀(i, j) ∈ E

where · is the standard dot product over R
m. That is, the edge

lengths (interagent distance) over G are preserved in time, in
other words, no edge is compressed or stretched over time.
The framework is said to undergo a finite flexing if pi is dif-
ferentiable and edge lengths are preserved, with trivial flexings
defined as translations and rotations of R

2 itself. If for Fp all
infinitesimal motions are trivial flexings, then Fp is said to
be infinitesimally rigid. Otherwise, the framework is called
infinitesimally flexible. It is worthy to note that while this
description of rigidity relies on motion of the framework, a
network being evaluated for infinitesimal rigidity (or in fact,
the notion of generic rigidity that follows) need not be mobile.

Intuitively, the concept of rigidity can be thought of in a
physical way, that is if Fp were a bar and joint framework, it
would be mechanically rigid against external forces. In gen-
eral, the rigidity of Fp is tied to the specific embedding of G
in R

2, however, it has been shown that the notion of rigidity
is a generic property of G, specifically as almost all realiza-
tions of a graph are either rigid in infinitesimal motion or
flexible (i.e., they form a dense open set in R

2) [43]. Thus,
we can consider rigidity from the perspective of G, abstract-
ing away the necessity to check every possible realization.
The first combinatorial characterization of graph rigidity was
described by Laman in [31], and is summarized as follows
(also called generic rigidity).

Theorem 1 [31]: A graph G = (V, E) with realizations in
R

2 having n ≥ 2 nodes is rigid if and only if there exists
a subset Ē ⊆ E consisting of |Ē | = 2n − 3 edges satisfying
the property that for any nonempty subset Ê ⊆ Ē , we have
|Ê | ≤ 2|V̂| − 3, where |V̂| is the number of nodes in V that
are endpoints of edges (i, j) ∈ Ê .

We refer to the above as the Laman conditions, where it
follows that any rigid graph in the plane must then have
|E | ≥ 2n− 3 edges, with equality for minimally rigid graphs.
The impact of each edge on the rigidity of G is captured
in the notion of edge independence, a direct consequence of
Theorem 1.

Theorem 2 [33]: The edges (i, j) ∈ E of a graph G = (V, E)

are independent in R
2 if and only if no subgraph Ḡ = (V̄, Ē)

has |Ē | > 2|V̄| − 3.
The above conditions imply that a graph is rigid in R

2 if
and only if it possesses 2n − 3 independent edges, where
edges that do not meet the conditions of Theorem 2 are
called redundant (see Fig. 1 for a depiction of graph rigid-
ity). Thus, in determining the rigidity of G, we must verify
the Laman conditions to discover a suitable set of independent
edges, a task that was originally solved in a centralized man-
ner by [33], with decentralization and parallelization achieved
in [42] and [44].

Remark 1: The extension of Laman’s conditions to higher
dimensions is at present an unresolved problem in rigidity the-
ory, and thus our contributions will be limited to the case of
multiagent networks in the plane. While there exist special

(a) (b)

Fig. 1. Example graphs demonstrating rigidity, where dashed links indicate
edges that have been added to form a new network. Notice that all solid edges
in graphs (a) and (b) are independent, while edge (v1, v3) in (b) is redundant.
(a) Nonrigid. (b) Rigid.

cases under which extensions to three dimensions have been
achieved, we point out that results in the plane do not necessar-
ily limit application. For example, in aerial platforms, rigidity
may only be necessary in a 2-D subspace, where team altitude
is often fixed or relatively easy to measure.

C. Henneberg Construction

In this section, we describe the Henneberg construction,
an inductive technique to construct rigid graphs introduced
by [45], which will prove useful in evaluating the com-
plexity of our bipartition search. The reader is referred
to [32], [46], and [47] for further details. The construction
process starts from a graph with two vertices linked by an
edge. At each step in the procedure, either a vertex and two
edges are added, or a vertex and three new edges are added
while one existing edge is removed. The new edges are inci-
dent to the new vertex. These operations are termed vertex
addition and edge splitting, respectively. Let G = (V, E) be
the starting graph and G′ = (V ′, E ′) the graph obtained after
the application of one of the Henneberg operations, which are
described as follows.

Definition 1 (Vertex Addition): A new vertex v is adjoined,
then V ′ = V ∪ {v}, as well as two edges so that E ′ = E ∪
{(v, j), (v, k)} for some j, k ∈ V .

Definition 2 (Edge Splitting): A new vertex v is adjoined,
then V ′ = V ∪ {v} as well as three edges, while an edge is
removed, so that E ′ = E ∪{(v, j), (v, k), (v, m)} \ {e} for some
j, k, m ∈ V with at least two of the vertices j, k, m adjacent
in G and the edge e either (j, k), (j, m), or (k, m).

In Fig. 2, an example of Henneberg construction is given.
Finally, we provide an important result that relates the
Henneberg construction to minimally rigid graphs.

Lemma 1 [32]: A graph is minimally rigid if and only if it
has a Henneberg construction.

D. Definitions and Problem Formulation

Our goal in this paper will ultimately be to partition (or split)
the graph G such that each resultant component is rigid and
follows the properties outlined above. Thus, we define the
following.

Definition 3: A bipartition of a graph G = (V, E) is
a division of the graph into two disjoint components,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON CYBERNETICS

(a) (b) (c)

Fig. 2. Example of Henneberg construction. (a) Rigid graph during
Henneberg construction. (b) Vertex addition (dashed blue). (c) Edge splitting
(thick yellow).

Fig. 3. [23, Fig. 7] Z-link in four possible configuration of edges.

namely G1(V1, E1) and G2(V2, E2), such that V1 ∪ V2 = V ,
V1 ∩ V2 = ∅, E1 ∪ E2 = E , and E1 ∩ E2 = ∅. We refer to a k-
bipartition as the case in which we choose k ≥ 1 such that
|V1| = k and |V2| = n − k, dictating the size of the resulting
partitions.

Further, if a graph can be partitioned, it follows that there
exists a cut.

Definition 4: A cut C = {(i, j) ∈ E | i ∈ V1, j ∈ V2}, is a set
of edges that when removed from G yields disjoint components
G1 and G2 such that V1 ∩ V2 = ∅ and E1 ∩ E2 = ∅.

Next, we recall two useful results and intuition from [23]
which will aid us in determining proper graph partitions.

Definition 5 [23]: We refer to a bipartite graph K2,2 with
three edges, shown in Fig. 3, as a Z-link.

Corollary 1 [23]: Two minimally rigid graphs that are
connected using a Z-link construct a minimally rigid graph.

Notice that the Z-link structure is not only useful in char-
acterizing edges that preserve rigidity, but also takes on a
two-hop structure which is amenable to decentralization.

Remark 2: It is important to note that we will be restricted
to two-hop decentralization precisely by the nature of the
rigidity problem. As pointed out in [48, Lemma 3.3], “For
an agent i, the local graph containing neighboring nodes and
incident edges possesses only independent edges.” That is, at
least locally all edges appear necessary for a graph to remain
rigid, and thus they will be perceived as nonremovable in a cut
operation. Therefore, as expressed by the Z-link structure, we
must consider at least two-hop information when determining
cuts in the network.

Finally, our target problem is stated formally as follows.
Problem 1: Given a minimally rigid graph G = (V, E) with
|V| = n, partition G into two disjoint subgraphs G1 = (V1, E1)

and G2 = (V2, E2) having |V1| = k and |V2| = n− k such that
G1 and G2 are minimally rigid. Notice that due to the Laman
conditions of Theorem 1, it is implied that k ≥ 2, yielding
|V1| ≥ 2 and |V2| ≥ 2, with |V| = n ≥ 4.

In other words, the problem is to find a proper cut over
the graph G; we refer to this as the rigid bipartitioning
problem.

III. IDENTIFYING RIGID BIPARTITIONS

We now turn our attention to deriving an algorithm
that identifies rigid bipartitions for networks in the plane.
According to the minimal rigidity assumption, we know that:

1) G must have 2n− 3 independent edges;
2) G1 must have 2k − 3 independent edges;
3) G2 must have 2(n− k)− 3 independent edges.
Hence, we can conclude that |V1| + |V2| = 2n − 6, and

thus there must exist three independent edges that connect G1
and G2 that are lost when G is partitioned, i.e., edges that
are independent with respect to (E1 ∪ E2). Therefore, we can
argue that a feasible cut must be composed of exactly three
edges. Furthermore, we can prove that, after identifying a cut
over G, it is sufficient to check if the two induced components
G1 and G2 have the desired number of vertices, in order to
ensure they are two minimally rigid graphs. Thus, as stated
in the following theorem, there is no requirement to count the
number of edges in the graph, a convenient property for our
purposes.

Theorem 3: Let G = (V, E) be a minimally rigid graph and
let be C a cut over G such that |C| = 3. Let G1 = (V1, E1) and
G2 = (V2, E2) be the two subgraphs of G that are obtained after
the cut, again with |V1| ≥ 2 and |V2| ≥ 2. Then, G1 (or G2)
has k vertices ⇐⇒ it has 2k − 3 edges.

Proof: (=⇒) Let us assume that G1 has k vertices. It follows
that G2 has n− k vertices. Since G1 and G2 are subgraphs of
G, condition 2 of Theorem 1 must hold for both and then
|E1| ≤ 2k − 3 and |E2| ≤ 2(n − k) − 3. We know also that
|E1| + |E2| = |E | − |C| = 2n − 6. This equation is satisfied
only when |E1| = 2k − 3 and |E2| = 2(n− k)− 3.

(⇐=) Let us assume that |E1| = 2k− 3 edges, then |E2| =
|E | − |C| − |E1| = 2(n− k)− 3. Three cases are possible.

1) |V1| < k: This implies that condition 2 of Theorem 1
does not hold for G1. However, this contradicts the
minimal rigidity assumption over G.

2) |V1| > k: This implies that |V2| < n − k and thus con-
dition 2 of Theorem 1 does not hold for G2. Again, this
contradicts the minimal rigidity assumption over G.

3) |V1| = k: This is the only admissible case. �
From Theorem 3, we can argue that given a cut C over

minimally rigid graph G, if the cut is composed by three
edges, then the two induced components, namely G1 and G2,
are minimally rigid. Among all three edge cuts of G, we
concern ourselves with cuts that have the Z-link structure
from Corollary 1. Although extending our methods to account
for all rigidity-preserving cuts is straightforward, Z-links are
the only cuts that are structurally guaranteed to be amenable
for decentralization. This choice is supported by simula-
tion results, as described in Section V, which demonstrate

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CARBONI et al.: RIGIDITY-PRESERVING TEAM PARTITIONS IN MULTIAGENT NETWORKS 5

that the number of undetected cuts is reasonably low. That
is, we believe that losing a few cuts is a bearable disad-
vantage, when compared with the benefits of decentralized
autonomy.

Now that, we understand the structural elements we seek in
order to partition the graph, let us characterize our worst-case
expectations in searching for such cuts (a bound which we
tighten in Section III-B).

Remark 3: An absolute bound on the number of Z-links
in a graph can be obtained by considering that, in the worst
case, each group of three edges is a Z-link. So, the number
of Z-links must be bounded by

(n
3

) = O(|E |3) as the graph is
minimally rigid, with |E | = 2n− 3.

Therefore, we can expect that our bipartition search will
possess polynomial complexity; a fact that we corroborate in
the sequel. During our search, when a Z-link has been iden-
tified it is necessary to verify two properties: that it is a cut
over G, since there could be some Z-links in the graph that
are noncuts, and if the two subgraphs obtained by the cut are
minimally rigid graphs with k and n − k nodes, as we could
discover feasible cuts that do not meet this condition. Given
the result in Theorem 3, i.e., a cut yields two minimally rigid
subgraphs over which counting vertices is sufficient, we can
simply perform an exploration of the graph by means of a
DFS. Starting from a node of the Z-link, the graph explo-
ration is carried out avoiding all the edges that belong to the
Z-link. The search ends when no more nodes can be visited.
Letting V ′ be the set of visited nodes, we can obtain one of
the following results.

1) |V ′| = n: The considered Z-link is not a cut because the
DFS algorithm has explored the entire graph.

2) |V ′| < n ∧ |V ′| �= k ∧ |V ′| �= n − k: The considered
Z-link is a cut but it is not our desired cut.

3) |V ′| = k ∨ |V ′| = n − k: The considered Z-link is a
proper cut.

This intuition is illustrated in Fig. 4. The graph has n = 8
vertices and for the bipartition we fix k = 3. Dashed red
edges belong to the Z-link. A vertex is blue if it is visited.
In Fig. 4(a), exactly k = 3 vertices can be visited, in fact the
selected Z-link is a proper cut. In Fig. 4(b), all n vertices are
reachable indicating that the Z-link is not a cut.

A. Algorithm Details and Pseudocode

The proposed algorithm, which takes a centralized form,
is now described in detail. As described above, the Z-
link structure is vital to identifying the graph cut that
yields rigid partitions. To find Z-links in G we adapt the
graph search mechanism applied in [38], (which originated
from [49] and [50]) known simply as the X − e+ Y method.
Briefly, the method is concerned with generating all mem-
bers of the set F = {X |X ⊆ E |π(X) = 1}, where
π(X) : 2E → {0, 1} is a monotone boolean function indicating
the satisfaction of some desired property for X. In our case, we
wish to generate elements X ⊆ E that are quads, that is, sets
of four nodes which contain at least one Z-link. The X−e+Y
method applied in this context will then generate all quads
that contain Z-links in G. The search for quads occurs over a

(a)

(b)

Fig. 4. For this example n = 8 and k = 3. In dashed red are the Z-link
edges. In blue are the visited nodes. (a) At the end of the graph exploration
exactly k vertices have been visited, hence the Z-link is a proper cut. (b) All
n vertices have been explored hence the Z-link is not a cut.

supergraph having vertexes in F , i.e., the supergraph contains
supernodes with quads that possess Z-links. The neighborhood
N(X) of X ∈ F and the family YX,e are defined by

N(X) = {
(X \ e) ∪ Y | e ∈ X, Y ∈ YX,e

}
(1)

and

YX,e = {Y |Y ⊆ E \ X ∧ π((X \ e) ∪ Y) = 1}. (2)

That is, for every valid quad X ∈ F and e ∈ X, we extend
X \e to the set (X \e)∪Y; in our case, this constitutes a swap-
ping operation, where we refer to YX,e as a swap set, with
YX,e containing nodes Y which yield Z-links when swapped
into X \ e. For each extension of X, a new supernode in the
supergraph is generated yielding a directed graph structure
over F . It follows that the supergraph is strongly connected
and thus performing a breadth-first search can generate all
elements of F [38], as opposed to a brute force search.3

Our adaptation of this method for finding Z-links and ulti-
mately a rigidity-preserving partition is shown in Algorithm 1,
a complete explanation of which is now given.

At a high-level, the algorithm operates as follows. The set
of quads that contain Z-links is generated by the swap opera-
tions of Algorithm 2, and for each Z-link we determine if it is
a graph cut which yields rigid disjoint components, exploiting
the conclusions of Proposition 3. Starting from a minimally
rigid graph G(V, E) the first step is to find an initial Z-link
containing quad for the supergraph search, which is done in a

3In a minimally rigid graph, as Z-links scale like O(n3), a brute force
search may not be intractable. However, in nonminimally graphs, the focus
of our future work, the scaling becomes O(n6), demanding a pruned search
method as is given here.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON CYBERNETICS

Algorithm 1 Partition a Graph Into Two Rigid Components
1: procedure SPLITGRAPH(G = (V, E), k)
2: [quad, zlinks]← INITIALSUPERNODE(G)

3: for each zlink ∈ zlinks do
4: if ISACUT(G, k, zlink) then
5: return zlink
6: end if
7: end for
8: P← quad
9: while P �= ∅ do

10: [quad, P]← REMOVEFROMQUEUE(P)

11: Q← INSERTINTOQUEUE(Q, quad)

12: for v← 1 to 4 do
13: [S, zlinks] ←

SWAPSETFROMQUAD(G, quad, v)
14: for nbrQuad ∈ S do
15: if nbrQuad ∩ (P ∪ Q) = ∅ then
16: for each zlink ∈ zlinks do
17: if ISACUT(G, k, zlink) then
18: return zlink
19: end if
20: end for
21: P ←

INSERTINTOQUEUE(P, nbrQuad)

22: end if
23: end for
24: end for
25: end while
26: end procedure

brute force way. For each node i ∈ V the two-hop neighbor-
hood is considered in order to identify the set of all quads to
which i contributes, i.e., the set nodes = {i}∪Ni∪{Nj,∀j ∈ Ni}
is generated. Then the set quads is obtained simply by picking
from nodes all possible combinations of four distinct elements
of nodes so if |nodes| = p then |quads| = (p

4

)
. Next, for

each quad ∈ quads the presence of a Z-link is revealed as in
Algorithm 3. Consider the basic idea that there are only three
ways to partition a quad {1 2 3 4} into pairs.

1) {1, 2} and {3, 4}.
2) {1, 3} and {2, 4}.
3) {1, 4} and {2, 3}.
The presence of a Z-link can then be revealed according to

the following proposition.
Proposition 1: Let us consider a graph Ĝ = (V̂, Ê) with

four vertices. Ĝ is a Z-link if there exists a partition of V̂ into
two sets P̂1 = {i ∈ V̂ : |P̂1| = 2} = {v1, v2} and P̂2 = V̂ \ P̂1
such that given the set Ê12 = {(i, j) ∈ Ê : i ∈ P̂1, j ∈ P̂2}, all
the following conditions hold.

1) |Ê12| = 3.
2) ∃(i, j) ∈ Ê12 : i = v1.
3) ∃(i, j) ∈ Ê12 : i = v2.
In other words, if a pair has exactly three outgoing edges,

where each nodes contributes at least a single edge, then there
is a Z-link. The conditions introduced in Proposition 1 are
explained through an example in Fig. 5. Two possible pairwise
partitions of a graph with four vertices are shown. The red

(a) (b)

Fig. 5. Example of the conditions stated in Proposition 1. The red (thicker)
edges belong to the set E12 so they are the edges that will be removed.
(a) Z-link is found. (b) It is not possible since |E12| = 4.

Algorithm 2 Returns Nodes Which Yield Z-Links When
Swapped

1: procedure SWAPSETFROMQUAD(G, quad, v)
2: S← ∅
3: s← quad(v)
4: for each j ∈ Ns do
5: nodes← nodes ∪Nj

6: end for
7: nodes← nodes \ quad
8: for each node ∈ nodes do
9: swapQuad← quad

10: swapQuad(v)← node
11: zls← ZLINKSFROMQUAD(G, swapQuad)

12: if zls �= ∅ then
13: zlinks← zlinks ∪ zls
14: S← S ∪ node
15: end if
16: end for
17: return {S, zlinks}
18: end procedure

edges belong to the set E12 so they are candidates to be
removed if the Z-link is chosen. In Fig. 5(a), a Z-link is found
by partitioning the graph into P1 = {1, 2} and P2 = {3, 4}. In
Fig. 5(b), a Z-link cannot be found since |E12| = 4, in fact the
removal of the red edges does not lead to a bipartite graph.

After a Z-link is detected we must check if it is a cut over
the graph G, and if the removal of the edges that belong to
the Z-link yields two disjoint components, one with k nodes
and the other with n − k nodes. This operation is described
in Algorithm 4. As introduced above, a DFS is performed,
taking only a single arbitrary node from the current Z-link as
root of the exploration tree. At the end of this recursive search
the visited nodes are counted and if this number is equal to
k or equal to n − k it implies that a proper Z-link is found.
Otherwise, the Z-link has to be discarded and the search must
continue until either a valid bipartitioning Z-link is found, or
the graph is deemed infeasible for the desired k-bipartition.

B. Complexity Analysis

To close, we now provide a proof of the expected complex-
ity of our proposed algorithm.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CARBONI et al.: RIGIDITY-PRESERVING TEAM PARTITIONS IN MULTIAGENT NETWORKS 7

Algorithm 3 Returns the Z-Links in a Given Set of Four Nodes
1: procedure ZLINKSFROMQUAD(G, quad)
2: zlinks← ∅
3: for each {p1, p2} ∈ quad do
4: if |Np1 | + |Np2 | = 3∧ |Np1 | ≥ 1∧ |Np2 | ≥ 1 then
5: for each j ∈ Np1 do
6: zlinks← zlinks ∪ (p1, j)
7: end for
8: for each j ∈ Np2 do
9: zlinks← zlinks ∪ (p2, j)

10: end for
11: end if
12: end for
13: return zlinks
14: end procedure

Algorithm 4 Check if a Z-Link is a Proper Cut Over a Graph
1: procedure ISACUT(G = (V, E), k, zlink)
2: Ê ← E \ zl
3: Ĝ ← (V, Ê)

4: visited← DFS(Ĝ, v ∈ zlink)
5: if |visited| = k then
6: G1 ← visited
7: G2 ← V \ visited
8: return true
9: else if |visited| = n− k then

10: G1 ← V \ visited
11: G2 ← visited
12: return true
13: end if
14: return false
15: end procedure

Theorem 4: Consider a minimally rigid graph G in the
plane. By construction, Algorithm 1 and its constituent com-
ponents exhibit polynomial complexity when applied to G,
and therefore the rigid bipartitioning problem is solved in
polynomial time.

Proof: From [38], it follows that the search mechanism illus-
trated in Algorithm 1 runs in polynomial time if and only if the
set of reachable quads returned by SWAPSETFROMQUAD can
be generated in polynomial time. In other words, the determi-
nation of swaps which yield new Z-links dominates execution.
In our case, as each quad must contain exactly four elements,
while swapping only a single element, each set is gener-
ated by inspecting at most O(n) swap possibilities, with each
inspection trivially requiring O(1) operations (i.e., by applying
Algorithm 3). Thus, we conclude that SWAPSETFROMQUAD

runs in polynomial time, and our result follows.
The correctness of the algorithm follows from the preceding

propositions of this section. As will be shown in Section V,
our proposed algorithm executes in O(n3) time, in a Monte
Carlo sense.

Theorem 5: In a minimally rigid graph G = (V, E) with
n nodes, the number of Z-links is bounded above by O(n2).

Proof: As described in Section II-C each minimally rigid
graph can be obtained through Henneberg construction. At
each step of the Henneberg construction, a new vertex is added
to the graph and this vertex is connected with two or three old
vertices. For a graph with n nodes n − 2 steps are required,
and at the end of the kth step we have constructed a minimally
rigid partial graph Gk = (Vk, Ek) with |Vk| = k + 2 = nk and
|Ek| = 2nk − 3. Now, consider the addition of Z-links at each
step of the construction. The worst case is when a new vertex
is added through vertex addition, i.e., it is connected with two
existing nodes. There could be a new Z-link by adding to this
set of three vertices each of the remaining vertices, and hence
at the end of kth step there could be nk − 3 = O(nk) = O(n)

new Z-links. At the end of the graph construction we have a
number of Z-links that is bounded by

n−2∑

k=1

(nk − 3) =
n−2∑

k=1

O(n) = (n− 2)O(n) = O(n2)

concluding the proof.
Theorem 6: Given a minimally rigid graph G = (V, E) with
|V| = n the split search is O(n3).

Proof: According to Theorem 5, we know that the number
of Z-links in the graph is O(n2). In order to check if a Z-link
is a proper cut a DFS-visit of the graph has to be performed.
It starts from a node of the Z-link and visits each node in the
graph not more than one time, so it is O(n). Hence the split
search is O(n2)O(n) = O(n3).

C. Alternative Problem Formulations and Applications

We close our analysis of the centralized k-bipartitioning
algorithm by pointing out possible robotic applications and
extensions.

1) In our original problem formulation, we fix a value
of k and then check if there exists a k-bipartition
of the graph. This could be useful when an exter-
nal supervisor provides split commands to a team of
mobile agents, without specifying which robots have
to belong to a partition and which to the other, but
only how many agents are needed. There exist swarm
density driven explorations (see [51]) where cardinality-
based team partitioning could prove useful, particularly
in preserving the localizability of sub-teams to guide
exploration.

2) Alternatively, for each value of k, with 1 ≤ k ≤ �n/2�,
we could check if there exists a k-bipartition of the
graph. We can imagine a scenario in which there is a
list of tasks that the robots must execute, and for each
task there is a specification for the minimum number of
needed robots. Thus, it may be important to know which
tasks are feasible for a given graph topology, such that
an external operator could choose the tasks with higher
priority among those which are feasible, or provide for
a redistribution of the robots in such a way as to make
executable a task that previously was not. This check
can be performed, in a way similar to that described in
Algorithm 1, with the appropriate changes in order to

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON CYBERNETICS

continue the check until either one cut for each value of
k is found or all Z-links have been checked.

3) Finally, for each cut in the graph, we could identify
the size of the induced k-bipartition. This functionality
would allow a supervisor to choose where the team has
to be split, for example in navigating environments with
obstacles, requiring shifts in team size and composition.

In Theorem 4, we have proven that Algorithm 1 exhibits
polynomial complexity, and in particular we have shown that
it is bounded above by O(n3). Thus, we can argue that this
complexity is associated to the solution of the above consider-
ations. This follows from the observation that these algorithms
have the same worst case of evaluating O(n2) Z-links using an
O(n) search. The above formulations can be either addressed
in a centralized manner (as discussed thus far), or in a decen-
tralized manner, i.e., the mobile agents must perform the
commands autonomously and guarantee rigidity in the result-
ing split teams. In Section IV, we will address the k-bipartition
problem from a decentralized point of view.

IV. EXTENSIONS FOR DECENTRALIZATION

The decentralized version of the proposed algorithm fol-
lows directly from the centralized formulation, and therefore
inherits much of its structure and primary insights. To begin,
consider the following assumptions which will facilitate sound
agent interaction.

Assumption 1 (Asynchronicity): We assume an asyn-
chronous model of time, where each agent i ∈ I has a clock
which ticks according to some distribution with bounded
support (allowing for finite termination), independently of the
clocks of the other agents [52] (allowing also for the possibility
of delayed communication over links (i, j) ∈ E). Equivalently,
this corresponds to a global clock which ticks according at
times tk, k ≥ 1 having time-slots [tk, tk+1) which discretizes
system time according to clock ticks (for convenience, we will
use simply t) [53]. Such assumptions induce asynchronicity
in both the execution of local agent computation and the
broadcast and reception of interagent messages.

Under the above network conditions,4 we address the decen-
tralization with an algorithm that operates in two phases. First,
all agents search in parallel for the Z-links and build decentral-
ized Z-link sets which guide graph exploration. Then, auctions
are applied to determine leaders in order to sequentially eval-
uate all local Z-link sets in the graph, until a cut is found.
For convenience, we will denote by D our decentralization of
Algorithm 1, with pseudocode given in Algorithm 5.

To begin, we associate with each agent i ∈ I the following
variables (with initialization indicated by ←).

1) zlinksi ← ∅: Z-links set containing the Z-links to which
node i contributes.

2) isLeaderi ∈ {0, 1} ← 0: Current leadership status.
3) beenLeaderi∈ {0, 1} ← 0: Prior leadership status.
4) statusi∈ {0, 1} ← 0: Takes value 1 if the node has been

visited in the current DFS-visit, 0 otherwise.

4Note that in this paper we do not fully detail interagent messaging schemes
for the sake of clarity. For an illustration of messaging related to leader-based
decentralization and parallelization, we refer the reader to [42].

Algorithm 5 Decentralized Bipartition of the Graph G
1: procedure SPLITGRAPHDIST(G = (V, E), k)
2: � Parallel Z-link search phase:
3: for each i ∈ V do
4: zlinksi ← ZLINKSFROMNODE(i)
5: end for
6: � Leader election phase:
7: while ∃ i ∈ V:¬beenLeaderi and ¬cutFound do
8: leader← LEADERELECTION(G)

9: LEADERPROC(leader, k)
10: end while
11: end procedure

A. Parallelized Z-Link Search

In order to determine in parallel the Z-links to which each
node contributes, a two-hop neighborhood inquiry is per-
formed (achievable with localized communication). This is
the minimum number of hops that must be considered as the
Z-link is by construction a two-hop structure.5 The presence
of a Z-link can be revealed according to the following propo-
sition, which characterizes Z-links is a manner more amenable
for decentralization.

Proposition 2: Let us consider a graph Ĝ = (V̂, Ê) with
four vertices. Ĝ is a Z-link if there exists a partition of V̂ into
two sets P̂1 = {i ∈ V̂ : |P̂1| = 2} = {v1, v2} and P̂2 = V̂ \P̂1 =
{u1, u2} such that all the following conditions hold.

1) u1 ∈ Nv1 ∧ u2 ∈ Nv1.
2) v2 ∈ Nu1 \Nu2 ⊕ v2 ∈ Nu2 \Nu1.
In other words, if a node u1 has two neighbors v1 and v2 and

if the node u2 is in the neighborhood of either v1 or v2, then
the graph whose nodes are v1, v2, u1, and u2 is a Z-link. The
edges of this Z-links are (v1, u1), (u1, v2), and either (u2, v1)

or (u2, v2). Like the centralized case, we require that the Z-link
search is both exhaustive, and mutually exclusive, i.e., Z-links
exist in only a single agent’s Z-link set. More formally, at the
end of the Z-link search the following conditions must hold:

1)
⋃

i∈I zlinksi = zlinks;
2)

⋂
i∈I zlinksi = ∅;

where zlinks is the set of all Z-links as determined by
Algorithm 1. Satisfaction of the first condition is guaranteed
by the fact that a Z-link is by definition a local structure, i.e., a
structure that involves two-hop neighboring nodes that is pre-
cisely the size of the neighborhood explored by Algorithm 7.
The second condition indicates that each Z-link should be
added to the list of only one of the four nodes that com-
pose it. Let us consider a Z-link whose nodes are u1, u2, v1,
and v2 as described in Proposition 2. By applying such condi-
tions, the nodes u2 and v2 are not able to discover the Z-link
so the problem of duplication is only between u1 and v1.
To this end it is sufficient that when u1 finds a Z-link, it
must query v1 to know if it has been already found or not
(Algorithm 7, lines 4 and 9). We reiterate that Algorithm 7 is
run in parallel by all agents, and with no synchronization,

5As previously concluded, the Z-link structure is also the minimum-hop
structure that in general admits rigidity-preserving bipartitions.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CARBONI et al.: RIGIDITY-PRESERVING TEAM PARTITIONS IN MULTIAGENT NETWORKS 9

Algorithm 6 Leader Procedure
1: procedure LEADERPROC(i, k)
2: for each zlink ∈ zlinksi do
3: V ← ISACUTDIST(i, zlink, k)
4: if V = k then
5: return
6: else
7: if V �= |V| then
8: � Undesired cut found, mark it:
9: STORECUT(zlink, V)

10: else
11: � Not a cut, allow future traversal:
12: RESTOREEDGES(zlink)
13: end if
14: end if
15: end for
16: end procedure

Algorithm 7 Determine the Z-Links Incident to a Given Node
1: procedure ZLINKSFROMNODE(i)
2: � Check distinct neighbor pairs:
3: for each {p1, p2} ∈ Ni ×Ni | p1 �= p2 do
4: if p1 has not explored i then
5: for each j ∈ Np1 \Np2 do
6: zlinksi ← zlinksi ∪ {(i, p1), (i, p2), (p1, j)}
7: end for
8: end if
9: if p2 has not explored i then

10: for each j ∈ Np2 \Np1 do
11: zlinksi ← zlinksi ∪ {i, p1), (i, p2), (p2, j)}
12: end for
13: end if
14: end for
15: end procedure

yielding significant speedup to the Z-link search, a property
enabled by the local Z-link structure.

B. Leader Election and Execution Logic

When all Z-links have been found we make use of an auc-
tion for electing an agent in the network to become the leader,
such as in [42] and [54]. Some initiating agent begins by
triggering6 an auction for electing the first lead agent and
then an auction runs after each leader evaluates its Z-links.
Specifically, to each agent i ∈ I we associate a bid for lead-
ership ri = [i, bi] with bi ∈ R≥0 indicating the agent’s fitness
in becoming the new leader, with bi = 0 if agent i has previ-
ously been a leader, and bi ∈ R+ otherwise. Denoting the local
bid set by Ri = {rj | j ∈ Ni ∪ {i}}, the auction then operates
according the following agreement process:

ri(t
+) = argmax

rj∈Ri

(bj) (3)

6For example, in response to a supervisor command, or in response to an
environmental percept such as an obstacle which must be traversed.

Algorithm 8 DFS Visit Which Avoids Forbidden Edges
1: procedure SMARTDFSVISIT(i, zlink)
2: statusi ← 1
3: V ← 1
4: for each j ∈ Ni do
5: if statusj = 0 then
6: V ← V + SMARTDFSVISIT(j, zlink)
7: end if
8: end for
9: � Prune based on identified cuts:

10: for each cut ∈ cutsi do
11: � cut reachable if transversed while avoiding zlink
12: if ¬REACHED(cut) ∧ REACHABLE(cut) then
13: SETREACHED(cut)
14: V ← V + cut.size
15: � p ∈ cut and in the same partition as i
16: if statusp = 0 ∧ REACHABLE(p) then
17: V ← V + SMARTDFSVISIT(p, zlink)
18: end if
19: end if
20: end for
21: end procedure

where the notation t+ indicates a transition in ri after all neigh-
boring bids have been collected through messaging. As G is
rigid and thus connected, (3) converges uniformly to the largest
leadership bid

ri = argmax
rj(0)

(
bj(0)

)
, ∀ i, j ∈ I (4)

after some finite time [55], [56]. After convergence of (3)
the winning agent then takes on the leadership role, with the
previous leader relinquishing its status. The bid for each agent
i is obtained as bi = (1 − statusi) ∗ fitnessi, where fitnessi is
chosen relative to the application domain (see Remark 4). The
term 1− statusi allows us to reduce the number of nodes that
take part in the auction to those for which status = 0 hold.
The reasons of this choice will be explained below as they are
strictly related to the graph exploration algorithm.

The task of the leader is to evaluate the Z-links it has iden-
tified in order to find a cut that will induce a k-bipartition
of the graph. This is accomplished by the execution of the
Algorithm 6. With respect to the centralized version, a cut
search is performed by means of a more efficient DFS-visit
of the graph that is described in Algorithm 8. In the decen-
tralized version the set of visited nodes is not available and a
counter is introduced, V ≥ 0, which stores how many nodes
have been visited by the current DFS-visit. This algorithm is
invoked by ISACUTDIST as depicted in Algorithm 6. The role
of the function ISACUTDIST is to first make nontraversable
the edges belonging to the Z-link and then to perform the DFS
traversal of the graph respecting this information. As explained
in detail below, we have improved the DFS visit such that we
prune the search space relative to previously identified, but not
desired, Z-links.

Remark 4: In electing leaders to inspect local Z-link sets,
it is apparent that by choosing appropriate bid fitness, we can

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON CYBERNETICS

Fig. 6. Illustration of the pruning methods for the DFS of graph cuts in Algorithm 8. In this example, a previously identified, but undesirable cut yields a
pruning of the search space for the desired cut.

control the order in which leaders are elected, and thus the
order of Z-link evaluation. This immediately admits control
of the identified partition, particularly when there are multi-
ple possible solutions. We suggest that future work aimed at
determining bid fitness for example for optimal rigid partitions,
may prove useful.

C. Identifying Rigid k-Bipartitions

When an agent becomes the leader, it must determine
whether each Z-link to which it contributes is a proper cut,
i.e., if it leads to a k-bipartition of the graph. In our decen-
tralized approach, we have addressed the cut search problem
by modifying the classical DFS to yield significantly improved
complexity (as will be demonstrated in Section V). In the basic
DFS algorithm, each node is marked as it is visited, in order
to guarantee search correctness. However, in its standard form,
DFS visitation conveys no insight into partition rigidity. We
will show that with simple modifications, we are able to reduce
both the size of the Z-link search space by discarding infeasi-
ble Z-links, and the time required for graph exploration using
the implications of previously discovered cuts.

The general idea is to store information during DFS traver-
sal that is supplemental to visitation, and which may be useful
in future graph explorations. To begin, let us consider a cut
that induces a p-bipartition of the graph, i.e., a split of the
graph into two components with p and n − p nodes, respec-
tively. We observe that all cuts whose edges belong to the
p-side lead to p′-bipartitions for which p′ < p holds. Thus,
if we desire a k-bipartition with k > p, then we can a priori
discard all Z-links in the p-side of the graph. The consequence
is that each undesirable cut reduces the number of Z-link can-
didates over which we must search. In particular, if p̂ is the
number of nodes that are reached by a graph exploration for
an undesired cut, then O(p̂2) Z-links can be discarded, follow-
ing the conclusion of Proposition 5. Similarly, when a node
of a previously discovered undesirable cut is encountered, it
is unnecessary to further explore the graph beyond the edges
of the cut. This fact follows from the intuition that, through
previous traversal, there must be exactly p (or n − p) nodes
beyond an undesirable cut.

With the above pruning heuristics in mind, our smart graph
exploration is described in Algorithm 8 (with some logic in the
leader procedure, Algorithm 6), where the variable statusi con-
trols traversal and ultimately, leader election. Specifically, as

introduced in Section IV-B, only nodes with status = 0 partici-
pate in the leader election auction, and thus statusi implements
the discarding of infeasible Z-links, simply by disallowing
leaders who reside in infeasible p-partitions. The information
related to undesirable cuts is stored by all involved nodes, by
calling the function STORECUT (again, this action is achiev-
able through localized communication as all cuts are Z-links).
Finally, if a Z-link is not a cut, i.e., the number of visited
nodes equals n, we cannot retrieve any useful information to
prune the space search, and the leader invokes the function
RESTOREEDGES such that the edges of the Z-links become
traversable for future searching. For an illustration of the prun-
ing methods discussed above, see the basic example given
in Fig. 6.

Remark 5: Notice that the search improvements described
above are easily integrated into the centralized methods of
Section III, in cases where decentralization is not an applica-
tion concern.

D. Correctness and Complexity

For the sake of completeness, we conclude by analyzing
the correctness, finite termination and cost properties of the D

algorithm. First, we formally establish the stopping condition
for the D algorithm.

Definition 6 (Algorithm Stopping Condition): As previously
discussed, the D algorithm terminates upon satisfaction of the
following condition:

f D

stop �
{(

n∑

i=1

bi = 0

)

∨ cutFound

}

(5)

where
∑

i bi = 0 indicates that all agents have been a leader,
and cutFound is detected by the lead agent and conveyed to
the network.

Proposition 3 (Algorithm Termination): By construction,
executions of the D algorithm terminate in finite time.

Proof: The finiteness of execution is a direct consequence
of the finiteness of the number of Z-links of each list
zlinksi,∀i ∈ I and the finite convergence of auction (3), as
there exists no leader reelection by construction.

Proposition 4 (Algorithm Correctness): Consider the exe-
cution of the D algorithm applied to a graph G = (V, E). By
construction, it follows that it properly identifies (without false
positives) a cut over G such that a k-bipartition is induced.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CARBONI et al.: RIGIDITY-PRESERVING TEAM PARTITIONS IN MULTIAGENT NETWORKS 11

Fig. 7. Nonminimally rigid network. The solid red edges belong to the
independent set.

Proof: By assumption we know that the graph G is min-
imally rigid, hence it is connected. The correctness of the
algorithm is shown by arguing that a DFS-visit of the graph
allows us to visit either the entire graph or all the nodes of a
connected component (depending on which node is selected
as root). For each Z-link, such a visit is performed by avoiding
the edges that compose it. Thus, if less than n nodes are reach-
able then the graph is not connected, i.e., the Z-link identifies
a cut. Furthermore, from Theorem 3, we can conclude that if
the number of visited nodes is exactly k or n− k then the cut
induces a k-bipartition of the graph.

Proposition 5 (Algorithm Complexity): The complexity of
the decentralized algorithm is bounded from above by the
complexity of the centralized algorithm.

Proof: From Theorem 5, we know that the number of
Z-links in the graph bounded by O(n2). In the decentralized
algorithm each Z-link can be directly identified with cost O(1).
For each Z-link, a traversal of the graph is performed that is
upper bounded by O(n) complexity, yielding O(n3) overall,
our desired result.

Proposition 6 (Memory Requirements): An upper bound
for the memory requirements for each agent i scales like
O(n2).

Proof: The memory requirements for an agent i is dictated
by the storage of Z-link induced cuts known by the agent
itself. Therefore, in the worst case scenario, a single leader
may be able to see the entire graph in two-hops and thus such
an agent would need to store all potential cuts in the graph.
At this point, from Theorem 5, we know that the number of
Z-links is O(n2), thus the thesis follows.

V. SIMULATION RESULTS

To demonstrate the correctness and complexity of our pro-
posed methods, we simulated various rigid networks and
identified their feasible rigid bipartitions, the results of which
we now report. First, to illustrate the identification of a bipar-
tition, consider the nonminimally rigid network in Fig. 7 with
n = 20 nodes. Solid edges belong to the independent set,

Fig. 8. The network can be partitioned into two subgraph of k = 7 nodes
(blue dash-dotted edges) and n − k = 13 nodes (green dashed edges). The
solid red edges represent the cut.

Fig. 9. Percentage of cuts that are not Z-links, for varying number of nodes.

i.e., the edges that ensure the minimal rigidity of the network,
where independence was determined using our decentralized
methods detailed in [42]. The identified rigid bipartition is
then depicted in Fig. 8: the first component has k = 7 nodes
(blue dash-dotted edges) and the second has n− k = 13 nodes
(green dashed edges). The solid red edges belong to the cut,
i.e., they are the Z-link edges.

It may be perceived that evaluating only Z-links as candidate
cuts could be very limiting in terms of identifying bipartitions
in the network. For this reason, to validate our strategy, we
performed a Monte Carlo simulation to determine the ratio of
cuts that are overlooked in randomly generated graphs by only
considering Z-links as candidate cuts. In this regard, Fig. 9
shows that the percentage of cuts that are lost is relatively low
(at least statistically), that is on the order of twenty-five per-
cent. Note that, there may be degenerate cases where Z-links
fail to identify cuts, however, the Monte Carlo simulation sug-
gests that, at least in the sense of an average case, the proposed
algorithm performs well in identifying cuts in a network. In
our opinion, the relatively low impact of considering only
Z-links represents a reasonable tradeoff for the purposes of
decentralization.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON CYBERNETICS

Fig. 10. Average number of Z-links found by varying the number of nodes.

Fig. 11. Average number of operations performed by Algorithm 1, as a
function of the number of nodes.

In order to analyze complexity, an extensive Monte Carlo
analysis for a network with a number of nodes varying
from 4 to 20 has been considered. Thousand trials were run
for each configuration and average values were taken. Fig. 10
shows the average (blue solid line) of the number of Z-links
found in the network by varying the number of nodes, corrob-
orating the conclusion in Proposition 5 on the O(n2) scaling
of the Z-link search problem. Our claim of overall poly-
nomial complexity is then verified by Fig. 11 showing the
average of the number of operations performed by central-
ized Algorithm 1, as a function of the number of nodes. It is
apparent that our method exhibits O(n3) complexity, making
it a feasible means of rigid splitting in multiagent teams.

Finally, our Monte Carlo analysis illustrates the perfor-
mance of the decentralized algorithms proposed in Section IV.
Fig. 12 depicts that the average number of operations for
the parallelized Z-link search, by means of Algorithm 7, is
O(n2). Fig. 13 compares the complexity of the decentralized
Algorithm 5, using our proposed smart search heuristics, with
a standard DFS as in the centralized Algorithm 1. It is apparent
that our heuristics have asymptotically improved complexity,
which is demonstrated7 to be of order O(n2 log(n)).

7Our future work aims to provide a formal proof of this complexity.

Fig. 12. Average number of ops of decentralized Z-links search, for varying
number of nodes.

Fig. 13. Comparison of the complexity of the decentralized Algorithm 5,
using our proposed smart search heuristics, with a standard DFS as in the
centralized Algorithm 1.

Remark 6: It is worth noting that our simulation results
indicate that a particular cut, if it exists, can be found in sub
O(n3) time, and that the set of all rigidity-preserving cuts can
be found in O(n3) time, by storing all encountered cuts. As
a point of comparison, consider that evaluating infinitesimal
rigidity of a graph requires spectral techniques which exhibit
O(n3) complexity in a decentralized context [57].

VI. CONCLUSION

In this paper, we proposed the conditions under which
rigidity-preserving bipartitions are identified and iterative algo-
rithms to perform such an identification. Motivation was
derived from the implications of rigid networks for exam-
ple in formation control and localizability, and the flexibility
that splitting can provide for a robotic team. Our methods
exploited the previously considered Z-link structure for defin-
ing rigid partitions, and a supergraph search mechanism to
facilitate the discovery of network Z-links. Decentralization
was then achieved through parallelization of Z-link discover,
and leader election to distribute the evaluation of poten-
tial graph cuts. Finally, simulation results corroborated our

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CARBONI et al.: RIGIDITY-PRESERVING TEAM PARTITIONS IN MULTIAGENT NETWORKS 13

claims of algorithm correctness and guaranteed polynomial
complexity.

Future work will focus on optimally rigid bipartitioning,
multipartitioning, possible application in a 3-D workspace,
integration with obstacle avoidance and detection for environ-
ment appropriate splitting, and real-world application.

REFERENCES

[1] G. Shi, Y. Hong, and K. H. Johansson, “Connectivity and set tracking of
multi-agent systems guided by multiple moving leaders,” IEEE Trans.
Autom. Control, vol. 57, no. 3, pp. 663–676, Mar. 2012.

[2] P. Brass, F. Cabrera-Mora, A. Gasparri, and J. Xiao, “Multirobot tree
and graph exploration,” IEEE Trans. Robot., vol. 27, no. 4, pp. 707–717,
Aug. 2011.

[3] J. Cortes, S. Martínez, T. Karatas, and F. Bullo, “Coverage control for
mobile sensing networks,” IEEE Trans. Robot. Autom., vol. 20, no. 2,
pp. 243–255, Apr. 2004.

[4] X. Wang, S. Li, and P. Shi, “Distributed finite-time containment control
for double-integrator multiagent systems,” IEEE Trans. Cybern., vol. 44,
no. 9, pp. 1518–1528, Sep. 2014.

[5] W. Zeng and M. Chow, “Resilient distributed control in the presence
of misbehaving agents in networked control systems,” IEEE Trans.
Cybern., vol. 44, no. 11, pp. 2038–2049, Nov. 2014.

[6] W. Ren and R. W. Beard, “Consensus seeking in multiagent systems
under dynamically changing interaction topologies,” IEEE Trans. Autom.
Control, vol. 50, no. 5, pp. 655–661, May 2005.

[7] A. Priolo, A. Gasparri, E. Montijano, and C. Sagues, “A distributed algo-
rithm for average consensus on strongly connected weighted digraphs,”
Automatica, vol. 50, no. 3, pp. 946–951, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0005109813005852

[8] A. Nedic, A. E. Ozdaglar, and P. A. Parrilo, “Constrained consensus
and optimization in multi-agent networks,” IEEE Trans. Autom. Control,
vol. 55, no. 4, pp. 922–938, Apr. 2010.

[9] Y. Tang, H. Gao, W. Zou, and J. Kurths, “Distributed synchronization in
networks of agent systems with nonlinearities and random switchings,”
IEEE Trans. Cybern., vol. 43, no. 1, pp. 358–370, Feb. 2013.

[10] S. Berman, Q. Lindsey, M. S. Sakar, V. Kumar, and S. C. Pratt,
“Experimental study and modeling of group retrieval in ants as an
approach to collective transport in swarm robotic systems,” Proc. IEEE,
vol. 99, no. 9, pp. 1470–1481, Sept. 2011.

[11] R. K. Williams, A. Gasparri, and B. Krishnamachari, “Route swarm:
Wireless network optimization through mobility,” in Proc. IEEE/RSJ
Int. Conf. Intell. Robots Syst., Chicago, IL, USA, 2014, pp. 3775–3781.

[12] M. M. Zavlanos, A. Ribeiro, and G. J. Pappas, “Network integrity in
mobile robotic networks,” IEEE Trans. Autom. Control, vol. 58, no. 1,
pp. 3–18, Jan. 2013.

[13] J. Das et al., “Coordinated sampling of dynamic oceanographic features
with underwater vehicles and drifters,” Int. J. Robot. Res., vol. 31, no. 5,
pp. 626–646, 2012.

[14] A. Gasparri, F. Fiorini, M. Di Rocco, and S. Panzieri, “A networked
transferable belief model approach for distributed data aggregation,”
IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 42, no. 2, pp. 391–405,
Apr. 2012.

[15] D. Di Paola, A. Gasparri, D. Naso, G. Ulivi, and F. Lewis,
“Decentralized task sequencing and multiple mission control for het-
erogeneous robotic networks,” in Proc. IEEE Int. Conf. Robot. Autom.,
Shanghai, China, 2011, pp. 4467–4473.

[16] R. K. Williams and G. S. Sukhatme, “Constrained interaction and coor-
dination in proximity-limited multi-agent systems,” IEEE Trans. Robot.,
vol. 29, no. 4, pp. 930–944, Aug. 2013.

[17] M. Dorigo et al., “Swarmanoid: A novel concept for the study of het-
erogeneous robotic swarms,” IEEE Robot. Autom. Mag., vol. 20, no. 4,
pp. 60–71, Dec. 2013.

[18] D. Di Paola, A. Gasparri, D. Naso, and F. Lewis, “Decentralized
dynamic task planning for heterogeneous robotic net-
works,” Auton. Robots, pp. 1–18, 2014. [Online]. Available:
http://dx.doi.org/10.1007/s10514-014-9395-y

[19] S. Berman, A. Halasz, M. Hsieh, and V. Kumar, “Optimized stochastic
policies for task allocation in swarms of robots,” IEEE Trans. Robot.,
vol. 25, no. 4, pp. 927–937, Aug. 2009.

[20] J. Fink, N. Michael, S. Kim, and V. Kumar, “Planning and control for
cooperative manipulation and transportation with aerial robots,” Int. J.
Robot. Res., vol. 30, no. 3, pp. 324–334, Mar. 2011.

[21] I. Mas, S. Li, J. Acain, and C. Kitts, “Entrapment/escorting and
patrolling missions in multi-robot cluster space control,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), St. Louis, MO, USA,
2009, pp. 5855–5861.

[22] C. Lim, R. Mamat, and T. Braunl, “Market-based approach for
multi-team robot cooperation,” in Proc. 4th Int. Conf. Auton.
Robots Agents (ICARA), Wellington, New Zealand, Feb. 2009,
pp. 62–67.

[23] R. Olfati-Saber and R. M. Murray, “Graph rigidity and distributed forma-
tion stabilization of multi-vehicle systems,” in Proc. IEEE Conf. Decis.
Control, Las Vegas, NV, USA, Dec. 2002, pp. 2965–2971.

[24] T. Eren, W. Whiteley, A. Morse, P. N. Belhumeur, and
B. D. O. Anderson, “Sensor and network topologies of forma-
tions with direction, bearing, and angle information between agents,”
in Proc. IEEE Conf. Decis. Control, 2003, pp. 3064–3069.

[25] B. Anderson, C. Yu, B. Fidan, and J. Hendrickx, “Rigid graph control
architectures for autonomous formations,” IEEE Control Syst., vol. 28,
no. 6, pp. 48–63, Dec. 2008.

[26] J. Aspnes et al., “A theory of network localization,” IEEE Trans. Mobile
Comput., vol. 5, no. 12, pp. 1663–1678, Dec. 2006.

[27] I. Shames, A. N. Bishop, and B. D. O. Anderson, “Analysis of noisy
bearing-only network localization,” IEEE Trans. Autom. Control, vol. 58,
no. 1, pp. 247–252, Jan. 2013.

[28] A. R. Berg and T. Jordan, “A proof of Connelly’s conjecture on
3-connected circuits of the rigidity matroid,” J. Comb. Theory B, vol. 88,
no. 1, pp. 77–97, 2003.

[29] B. Jackson and T. Jordan, “Connected rigidity matroids and unique
realizations of graphs,” J. Comb. Theory B, vol. 94, no. 1, pp. 1–29,
2005.

[30] B. Hendrickson, “Conditions for unique graph realizations,” SIAM J.
Comput., vol. 21, no. 1, pp. 65–84, 1992.

[31] G. Laman, “On graphs and rigidity of plane skeletal structures,” J. Eng.
Math., vol. 4, pp. 331–340, Oct. 1970.

[32] T.-S. Tay and W. Whiteley, “Generating isostatic frameworks,” Struct.
Topol., vol. 11, pp. 21–69, 1985.

[33] D. J. Jacobs and B. Hendrickson, “An algorithm for two-dimensional
rigidity percolation: The pebble game,” J. Comput. Phys., vol. 137, no. 2,
pp. 346–365, 1997.

[34] L. Krick, M. E. Broucke, and B. A. Francis, “Stabilisation of infinitesi-
mally rigid formations of multi-robot networks,” Int. J. Control, vol. 82,
no. 3, pp. 423–439, 2009.

[35] T. Eren, “Formation shape control based on bearing rigidity,” Int. J.
Control, vol. 85, no. 9, pp. 1361–1379, 2012.

[36] D. Zelazo and F. Allgower, “Growing optimally rigid formations,” in
Proc. Amer. Control Conf., Montreal, QC, Canada, 2012, pp. 3901–3906.

[37] R. Ren, Y.-Y. Zhang, X.-Y. Luo, and S.-B. Li, “Automatic generation of
optimally rigid formations using decentralized methods,” Int. J. Autom.
Comput., vol. 7, no. 4, pp. 557–564, 2010.

[38] E. Boros et al., “Generating minimal k-vertex connected spanning sub-
graphs,” in Computing and Combinatorics (Lecture Notes in Computer
Science 4598). Berlin, Germany: Springer, 2007, pp. 222–231.

[39] T. Eren, B. D. Anderson, W. Whiteley, A. S. Morse, and
P. N. Belhumeur, “Merging globally rigid formations of mobile
autonomous agents,” in Proc. 3rd Int. Joint Conf. Auton. Agents
Multiagent Syst., vol. 3. New York, NY, USA, 2004, pp. 1260–1261.

[40] T. Eren, B. D. Anderson, A. S. Morse, W. Whiteley, and
P. N. Belhumeur, “Operations on rigid formations of autonomous
agents,” Commun. Inf. Syst., vol. 3, no. 4, pp. 223–258, 2004.

[41] W. Ong, C. Yu, and B. D. O. Anderson, “Splitting rigid forma-
tions,” in Proc. 48th IEEE Conf. Decis. Control; 28th Chinese Control
Conf. (CDC/CCC), Shanghai, China, Dec. 2009, pp. 859–864.

[42] R. Williams, A. Gasparri, A. Priolo, and G. Sukhatme, “Evaluating
network rigidity in realistic systems: Decentralization, asynchronicity,
and parallelization,” IEEE Trans. Robot., vol. 30, no. 4, pp. 950–965,
Aug. 2014.

[43] H. Gluck, “Almost all simply connected closed surfaces are rigid,” in
Geometric Topology. Berlin, Germany: Springer, 1975, pp. 225–239.

[44] R. K. Williams, A. Gasparri, A. Priolo, and G. S. Sukhatme,
“Decentralized generic rigidity evaluation in interconnected systems,”
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Tokyo, Japan, 2013,
pp. 5093–5099.

[45] L. Henneberg, Die Graphische Statik Der Starren Systeme. New York,
NY, USA: Johnson Reprint, 1911.

[46] R. Haas et al., “Planar minimally rigid graphs and pseudo-
triangulations,” Comput. Geom., vol. 31, no. 12, pp. 31–61, 2005.

http://www.sciencedirect.com/science/article/pii/S0005109813005852
http://dx.doi.org/10.1007/s10514-014-9395-y

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON CYBERNETICS

[47] B. Anderson, C. Yu, B. Fidan, and J. Hendrickx, “Rigid graph control
architectures for autonomous formations,” IEEE Control Syst., vol. 28,
no. 6, pp. 48–63, Dec. 2008.

[48] R. K. Williams, A. Gasparri, A. Priolo, and G. S. Sukhatme, “Distributed
combinatorial rigidity control in multi-agent networks,” in Proc. IEEE
Conf. Decis. Control, Florence, Italy, 2013, pp. 6061–6066.

[49] B. Schwikowski and E. Speckenmeyer, “On enumerating all mini-
mal solutions of feedback problems,” Discrete Appl. Math., vol. 117,
nos. 1–3, pp. 253–265, 2002.

[50] L. Khachiyan et al., “Generating cut conjunctions and bridge avoid-
ing extensions in graphs,” in Algorithms and Computation (Lecture
Notes in Computer Science 3827). Berlin, Germany: Springer, 2005,
pp. 156–165.

[51] T. W. Mather and M. A. Hsieh, “Distributed robot ensemble control for
deployment to multiple sites,” in Proc. Robot. Sci. Syst., Los Angeles,
CA, USA, 2011.

[52] A. Nedic, “Asynchronous broadcast-based convex optimization over a
network,” IEEE Trans. Autom. Control, vol. 56, no. 6, pp. 1337–1351,
Jun. 2011.

[53] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Gossip algorithms:
Design, analysis and applications,” in Proc. 24th IEEE INFOCOM Annu.
Joint Conf. IEEE Comput. Commun. Soc., vol. 3. Miami, FL, USA, 2005,
pp. 1653–1664.

[54] R. K. Williams and G. S. Sukhatme, “Topology-constrained flocking in
locally interacting mobile networks,” in Proc. IEEE Int. Conf. Robot.
Autom., Karlsruhe, Germany, 2013, pp. 2002–2007.

[55] D. P. Bertsekas, “The auction algorithm: A distributed relaxation
method for the assignment problem,” Ann. Oper. Res., vol. 14, no. 1,
pp. 105–123, 1988.

[56] M. M. Zavlanos, L. Spesivtsev, and G. J. Pappas, “A distributed auc-
tion algorithm for the assignment problem,” in Proc. IEEE Conf. Decis.
Control, Cancun, Mexico, 2008, pp. 1212–1217.

[57] D. Zelazo, A. Franchi, H. H. Bülthoff, and P. R. Giordano.
(2013). Decentralized Rigidity Maintenance Control With Range-
Only Measurements for Multi-Robot Systems. [Online]. Available:
http://arxiv.org/abs/1309.0535

Daniela Carboni received the master’s degree in
computer science and automation engineering from
the University of Roma Tre, Rome, Italy, in 2011,
where she is currently pursuing the Ph.D. degree
in informatics and automation from the Doctorate
School of Engineering.

Her current research interests include multirobot
systems and sensor networks.

Ryan K. Williams (S’11) received the B.S. degree
in computer engineering from Virginia Polytechnic
Institute and State University, Blacksburg, VA, USA,
and the Ph.D. degree in electrical engineering from
the University of Southern California, Los Angeles,
CA, USA, in 2005 and 2014, respectively.

He is currently a Research Affiliate with the
Robotic Embedded Systems Laboratory, University
of Southern California. His current research inter-
ests include control, cooperation, and intelligence in
distributed multiagent systems, topological methods

in cooperative phenomena, and distributed algorithms for optimization, esti-
mation, inference, and learning. He has been cited by various news outlets,
including the L.A. Times, and has a patent pending for his research on high-
speed autonomous underwater vehicles.

Dr. Williams was the recipient of the Viterbi Fellowship.

Andrea Gasparri (M’09) received the cum laude
degree in computer science and the Ph.D. degree
in computer science and automation, both from the
University of Roma Tre, Rome, Italy, in 2004 and
2008, respectively.

He has been a Visiting Researcher at several insti-
tutions, including the Universite Libre de Bruxelles,
Brussel, Belgium, City College of New York, New
York, NY, USA, and the University of Southern
California, Los Angeles, CA, USA. He is cur-
rently an Assistant Professor with the Department of

Engineering, University of Roma Tre. His current research interests include
mobile robotics, sensor networks, and networked multiagent systems.

Dr. Gasparri was the recipient of the Italian grant FIRB Futuro in Ricerca
2008 for the project Networked Collaborative Team of Autonomous Robots
funded by the Italian Ministry of Research and Education (MIUR).

Giovanni Ulivi (M’84) received the Laurea degree
in electrical engineering degree from the University
of Rome La Sapienza, Roma, Italy.

He has been a Full Professor with the Department
of Computer Science and Automation, University
of Roma TRE, Rome, Italy, since 2000, where
he teaches basic automatic control, measures for
automation, and robotics in the Engineering courses.
From 2004 to 2013, he was the Head of the
Department with the same university. His current
research interests include mobile robotics and sen-

sory data fusion. In the above fields, he coordinates the work of several Ph.D.
students. He has authored over 100 papers and has published in international
journals and conferences.

Prof. Ulivi is a member of IFACs TC on Robotics, TC on Autonomous
Vehicles, and TC on Instrumentation. He was a member of the Italian
Committee for Legal Metrology.

Gaurav S. Sukhatme (F’11) received the B.Tech.
degree in computer science and engineering from
the Indian Institute of Technology Bombay, Mumbai,
India, and the M.S. and Ph.D. degrees in computer
science from the University of Southern California
(USC), Los Angeles, CA, USA.

He is a Professor of Computer Science (joint
appointment in Electrical Engineering) with the
USC. He is the Co-Director of the USC Robotics
Research Laboratory and the Director of the USC
Robotic Embedded Systems Laboratory, which he

founded in 2000. He has served as a Principal Investigator (PI) for vari-
ous NSF, DARPA, and NASA grants. He is a Co-PI with the Center for
Embedded Networked Sensing, an NSF Science and Technology Center. His
current research interests include robot networks with applications to envi-
ronmental monitoring. He has published extensively in the above and related
areas.

Prof. Sukhatme was the recipient of the NSF CAREER Award and the
Okawa Foundation Research Award. He is one of the founders of the Robotics:
Science and Systems Conference. He was a Program Chair of the 2008 IEEE
International Conference on Robotics and Automation. He is a Program Chair
of the 2011 IEEE/RSJ International Conference on Intelligent Robots and
Systems. He is an Editor-in-Chief of Autonomous Robots and has served
as an Associate Editor of the IEEE TRANSACTIONS ON ROBOTICS AND

AUTOMATION, the IEEE TRANSACTIONS ON MOBILE COMPUTING, and on
the editorial board of the IEEE Pervasive Computing.

