
IEEE TRANSACTIONS ON MOBILE COMPUTING 1

Decentralized and Parallel Constructions for
Optimally Rigid Graphs in R2

Andrea Gasparri, Member, IEEE , Ryan K. Williams, Student Member, IEEE , Attilio Priolo, and
Gaurav S. Sukhatme, Fellow, IEEE

Abstract—In this paper, we address the decentralized and parallel construction of rigid graphs in the plane that optimize an edge-
weighted objective function under cardinality constraints. Two auction-based algorithms to solve this problem in a decentralized fashion
are first proposed. Centered around the notion of leader election, the first approach finds an optimal solution through a greedy bidding,
while the second approach provides a sub-optimal solution which reduces complexity according to a sliding mode parameter. Then, by
exploiting certain local structural properties of graph rigidity, a parallelization to build a portion of the optimal solution in constant time
is derived. A theoretical characterization of algorithm performance is provided together with complexity analysis. Finally, simulation
results are presented to corroborate the theoretical findings.

Index Terms—Graph Rigidity, Matroid Optimization, Decentralized Systems, Topology Control.

F

1 INTRODUCTION

IN recent years, collaborative and decentralized sys-
tems have become of interest across various research

communities, including robotics, control, sensor net-
works, etc. This interest is primarily due to their ad-
vantages in adaptability, efficiency and scalability with
respect to single-node systems [1]. Research interests in
the context of such systems range from mutual localiza-
tion [2], [3] and map-building [4], [5] to the develop-
ment of decentralized coordination algorithms [6] and
the design of decentralized interaction control frame-
works [7]. Further interests include issues such as prov-
ably fast data collection for sensor networks [8], and
joint scheduling and power control in wireless networks
[9]. Remarkable capabilities have been demonstrated in
several application contexts, including environmental
exploration and sensing [10], [11], search and rescue
operations [12], and coverage tasks [13].

A popular and important area of study in collaborative
systems is the topology control problem, where under a
wide array of performance metrics, a network’s topol-
ogy is chosen or controlled to be optimal. Examples
of topology control are exceptionally vast. For instance,
[14] optimizes the tradeoff between node degree and
hop stretch under directional communication. In [15]

• A. Gasparri and A. Priolo are with the Department of Engineering,
University of “Roma Tre”, Via della Vasca Navale, 79. Roma, 00146, Italy
(gasparri@dia.uniroma3.it; priolo@dia.uniroma3.it).

• R. K. Williams and G. S. Sukhatme are with the Departments of Electrical
Engineering and Computer Science at the University of Southern Califor-
nia, Los Angeles, CA 90089 USA (rkwillia@usc.edu; gaurav@usc.edu).

This work was partially supported by the Italian grant FIRB “Futuro in
Ricerca”, project NECTAR, code RBFR08QWUV, funded by the Italian
Ministry of Research and Education (MIUR), and partially by the ONR
MURI program (award N00014-08-1-0693), the NSF CPS program (CNS-
1035866), and the NSF grant CNS-1213128.

graph geometry is exploited for tunable and decentral-
ized angle-only topology control. Finally, [16] provides
schemes that construct degree limited and connected
piconets in multi-hop networks.

In this work, we consider the topology optimization
problem under a graph rigidity constraint. Broadly speak-
ing, rigidity represents an important requirement when
the task demands collaboration among teammates. For
example, its relevance is clear in the context of control-
ling formations of mobile nodes when only relative sens-
ing information is available [17], [18]. Specifically, the
asymptotic stability of a formation is guaranteed when
the graph that defines the formation is rigid by con-
struction. Rigidity becomes a necessary (and in certain
settings sufficient) condition for localization tasks with
distance or bearing-only measurements [19], [20]. The
ability of a network to self-localize is of clear importance
across various application contexts. For example in [20]
it is shown that if the rigidity conditions for localizability
for traditional noiseless systems are satisfied, and mea-
surement errors are small enough, then the network will
be approximately localizable, providing a connection
between robustness and rigidity. Finally, the flavor of
rigidity studied here is also a necessary component of
global rigidity [21], [22], which can further strengthen the
guarantees of formation stability and localizability, as the
uniqueness of a given topological embedding is more
easily characterized. It is clear then that network rigidity
acts as a fundamental precursor to both important spatial
behaviors and information-driven objectives, making it
a strong motivation of this work.

The literature regarding the study of rigidity is rich
and involves various disciplines of mathematics and
engineering [23]–[25]. Combinatorial operations to pre-
serve rigidity are defined in [24], while an extension of
these ideas to the context of formation control can be

IEEE TRANSACTIONS ON MOBILE COMPUTING 2

found in [18]. In [26], the authors propose a rigidity
maintenance controller for mobile teams, the application
of which is mainly limited by the centralized nature
of the algorithm and the requirement of continuous
communication and computational resources. To render
the rigidity control framework tractable from an imple-
mentation standpoint, in our previous work [27], we
propose a decentralized rigidity controller that preserves
the combinatorial rigidity of a dynamic network topol-
ogy in the plane, through mobility control. Notably, this
controller requires (local) communication and computa-
tion only during proposed transitions in the network
topology, not continuous operation as in [26].

In this work, we assume a utility metric is associated
with inter-node connections, allowing us to formulate
an optimization problem within the rigidity framework.
This is an interesting problem in the context of matroid
optimization for which centralized greedy solutions are
well-known [28], [29]. In a decentralized context, this
problem becomes particularly interesting as the network
is built iteratively up until the point of being minimally
rigid. Indeed, further optimal edges beyond the point of
minimal rigidity can be straightforwardly added as the
rigidity condition no longer requires verification. Thus,
without loss of generality we will limit ourself to the
construction of minimally rigid graphs.

In particular, this work aims at finding in a decentral-
ized way the optimal rigid subgraph, i.e., a minimally
rigid subgraph that maximizes a certain utility function.
Such an optimization is attractive as the resulting graph
not only holds the guarantees associated with rigidity,
but also considers network utility, e.g. for localizable and
edge optimal sensor embeddings or mobile networks.
Despite its great theoretical and application oriented ap-
peal, this problem has been largely overlooked in the re-
cent literature. In [30], decentralized rigid constructions
that are edge length optimal are defined, even though
the problem of checking this rigidity property for an
arbitrary given graph is not addressed. In [31] an algo-
rithm is proposed for generating optimally rigid graphs
based on the Henneberg construction [24], however the
proposed algorithm is centralized, generates only locally
optimal solutions, and requires certain neighborhood
assumptions to ensure convergence.

Notably, a rigid network is also inherently connected.
Connectivity is vital in ensuring information flow in a
network and in regulating the convergence of agreement
processes [32]. For example, the Fiedler eigenvalue is a
common metric for multi-node control, i.e., by following
a negative gradient to increase connectivity [33]. How-
ever, while such methods speed up the convergence of
agreement processes, increasing connectivity may have
a negative impact on robustness, e.g., noise propagation
and time delays [32]. In comparison, relevant notions of
robustness such as the H2 metric [34] can be applied in
the context of rigidity. Furthermore, rigidity guarantees
connectivity implicitly and most importantly imposes
further structure on the network often required for use-

ful guarantees in collaborative systems [27]. In this way,
rigid topology control can be seen as a natural evolution
of recent work in connectivity control.

In general, constrained combinatorial optimization prob-
lems are difficult to solve even approximately. However,
in light of results in matroid optimization theory [28],
[29], it turns out that for our problem a greedy edge
evaluation will ultimately yield a provably (sub)optimal
solution. Such a solution is then quite convenient for de-
centralization, as a simple and locally computable edge
ordering dictates algorithm execution. The first major
novelties of this work are represented by two decentral-
ized auction-based algorithms to build a (sub)optimal
rigid subgraph. Resting on the combinatorial Laman
conditions which characterize rigidity, and a leader elec-
tion algorithm to control rigidity evaluation, the first
approach finds an optimal solution at the cost of higher
communication complexity. The second approach then
provides a sub-optimal solution while reducing the com-
putational burden according to a sliding parameter ξ,
controlling the balance of optimality and complexity. The
second major novelty of this work is represented by a
partial parallelization of optimal rigid construction. In
particular, taking inspiration from the Henneberg opera-
tions for rigid graph construction [24] and the greedy
optimality of the solution, we derive local asynchronous
rules which can provably detect a bounded subset of the
optimal solution.

A theoretical characterization of the optimality of the
first algorithm is provided. Furthermore, a closed form
of the maximum gap between the optimal solution and
the sub-optimal solution provided by the second algo-
rithm expressed in terms of the tuning parameter ξ is
also provided. Then, the correctness of the parallelization
is analyzed along with a lower bound on the cardinal-
ity of the identified optimal subset. Finally, we close
the work by providing a detailed simulation analysis
of our algorithms. Notably, Relative Sensing Networks
(RSNs) [34] are considered as a realistic application
scenario where a mobile network with both spatial and
information-based objectives is investigated.

The remainder of the paper is organized as follows. In
Section 2, preliminary materials for rigidity and matroid
theory are given. The main results are introduced in
Section 3, where three decentralized approaches to find
an optimal rigid subgraph are presented. Simulations
to corroborate the theoretical findings are reported in
Section 4. Finally, conclusions are discussed in Section 5.

2 PRELIMINARIES AND BACKGROUND

Consider n nodes, which may be mobile or static, with
positions xi(t) ∈ R2 whose network topology is mod-
eled by a weighted undirected graph G(V, E), where
V = {1, . . . , n} is the set of nodes and E = {eij} ∈ V × V
is the set of edges. Note that, neither self-loops nor
multiple-edges between nodes are allowed. Denote with
Ni = {j ∈ V : eij ∈ E} the set of neighbors of the ith

IEEE TRANSACTIONS ON MOBILE COMPUTING 3

node and with Ei = {eij ∈ E : j ∈ Ni} the set of incident
edges to node i.

Assume a weight w(eij) = ψ(i) + ψ(j) + φ(i, j) to be
associated to each edge eij , where ψ(i) : V → R+ is a
utility function associated to each endpoint of the edge
and φ(i, j) : V×V → R+ is a metric associated to eij . Note
that due to the symmetry of G(V, E), eij ∈ E ⇒ eji ∈ E ,
w(eij) = w(eji). In the rest of the paper, the shorthand
notations G , G(V, E) and wij , w(eij) will be used for
the sake of readability.

Finally, we will assume that node-to-node commu-
nication is broadcast-based, in the sense that a single
message is sent to a node’s neighborhood during a round
of communication.

2.1 Graph Rigidity

One of the primary concerns of this work is the rigidity
property of the underlying graph G describing the net-
work topology. We provide here a high-level overview of
rigidity theory, and we direct the reader to [23], [24], [35],
[36] for a full technical review of the subject. To begin,
we recall the intuition of how rigidity is recognized for
a graph in the plane, following the exposition of [25].
Clearly, graphs with many edges are more likely to be
rigid than those with only a few, specifically as each edge
acts to constrain the degrees of freedom of motion of
the nodes in the graph. In R2, there are 2n degrees of
freedom in a network of n nodes, and when we remove
the three degrees associated with rigid translation and
rotation, we arrive at 2n−3 degrees of freedom we must
constrain to achieve rigidity. Each edge in the graph can
be seen as constraining these degrees of freedom, and
thus we expect 2n−3 edges will be required to guarantee
a rigid graph. In particular, if a subgraph containing k
vertices happens to contain more than 2k−3 edges, then
these edges cannot all be required for constraining the
degrees of motion, i.e., they cannot all be independent.
Our goal in evaluating rigidity is thus to identify the
2n− 3 edges that independently constrain the motion of
our nodes.

Notably, the concept of rigidity can alternatively be
viewed from a physical standpoint, in the sense that
if the graph were a bar-joint framework, it would be
mechanically rigid against external and internal forces.
That is, the edge lengths (inter-node distance) over G are
preserved in time if the nodes were to move infinites-
imally. This mechanical analogy reflects the notion of
infinitesimal rigidity which accounts for the specific po-
sitions of the nodes in the workspace and their motion.
On the other hand, combinatorial rigidity introduces the
concept of generic rigidity by which the rigidity or flex-
ibility of bar-joint frameworks is investigated in terms
of the structure of the underlying graph. Interestingly,
an important relationship between these two notions of
rigidity has been established in R2. More precisely, it
has been shown that the notion of rigidity in R2 is a
generic property of G, specifically as almost all realizations

v1

v2

v3

v4

(a) Non-rigid.

v1

v2

v3

v4

(b) Generically rigid.

v1 v2

v3

v4

v6

v5

(c) Full weighted graph.

v1 v2

v3

v4

v6

v5

(d) Optimal Laman subgraph.

Fig. 1. Graph rigidity and the Laman subgraph. Notice
that all solid edges in (a) and (b) are independent. Adding
edge (1, 3) in (b) generates a non-minimally rigid graph.
In (c) and (d) the fully connected graph and associated
optimal Laman subgraph are shown with edge weight
depicted by line weight (thicker is better).

of a graph are either infinitesimally rigid or flexible (i.e.
they form a dense open set in R2) [37]. Thus, we can
treat rigidity from the perspective of G, abstracting away
the necessity to check every possible realization of the
graph in R2. The first such combinatorial characterization
of graph rigidity was described by Laman in [23], and
is summarized as follows (also called generic rigidity).

Theorem 1 (Graph rigidity, [23]). A graph G = (V, E) with
realizations in R2 having n ≥ 2 nodes is rigid if and only if
there exists a subset Ē ⊆ E consisting of |Ē | = 2n − 3 edges
satisfying the property that for any non-empty subset E ′ ⊆ Ē ,
we have |E ′| ≤ 2k − 3, where k is the number of nodes in V
that are endpoints of (i, j) ∈ E ′.

We refer to the above as the Laman conditions. Note
that, at present the extension of Laman’s conditions to
higher dimensions is an unresolved problem in rigidity
theory. We call a graph Ḡ = (V, Ē) satisfying Theorem 1
a Laman subgraph of G, where it follows that any rigid
graph in the plane must then have |E| ≥ 2n − 3 edges,
with equality for minimally rigid graphs. We reiterate
that the (generic) rigidity of a graph in R2 is purely a
topological (combinatorial) property. Given our previous
discussion about the power of rigidity in interconnected
systems, we will in this work enforce the communication
topology to possess the rigidity property by satisfying
the above Laman conditions under a certain optimality
criterion. Fig. 1a and Fig. 1b depict the different flavors
of graph rigidity. In Fig. 1a we have a non-rigid graph as
the basic 2n− 3 edge condition of Laman is unfulfilled.
In adding edge (v2, v4) we then generate the minimally

IEEE TRANSACTIONS ON MOBILE COMPUTING 4

rigid graph of Fig. 1b composed of solid edges, as every
subgraph of k vertices has at most 2k− 3 edges. Further
addition of (v1, v3) (dashed) yields a non-minimally rigid
graph, precisely as the graph possesses greater than
2n− 3 edges.

2.2 A Decentralized Pebble Game for Graph Rigidity

The Laman conditions given in Theorem 1 state that a
graph G = {V, E} is rigid in R2 if and only if it possesses
|Ē | = 2n− 3 independent edges, where the residual edges
in Ẽ = E\Ē are said to be redundant. Thus, in determining
the rigidity of G, we must verify the Laman conditions
to discover a suitable set of independent edges Ē ⊆ E .
The following theorem provides a formal definition of
what a set of independent edges is.

Theorem 2 (Edge Set Independence, [25]). The edges of
a graph G = {V, E} are independent in R2 if and only if no
subgraph G′ = {V ′, E ′} has more than 2|V ′| − 3 edges.

A natural simplification to the process of determining
sets of independent edges is found in the pebble game
[25], a decentralization of which we provided in previous
work [38] and the results of which we now briefly
summarize. The fundamental idea behind the pebble
game algorithm is to grow a maximal set of independent
edges one at a time. For this reason we now introduce
a useful re-characterization of the Laman conditions.

Theorem 3 (Laman restated, [25]). For graph G = (V, E),
the following statements are equivalent:
• All (i, j) ∈ E are independent in R2.
• For each (i, j) ∈ E , the graph formed by quadrupling

(i, j), i.e., adding 3 virtual copies of (i, j) to E , has no
subgraph G′ = (V ′, E ′) in which |E ′| > 2|V ′|.

Interestingly, from Theorem 3 a useful condition for
the incremental evaluation of edge independence can be
derived as the following lemma demonstrates.

Lemma 1 (Incremental Edge Independence, [25]). Con-
sider a graph G = (V, E) and a (possibly empty) set of
independent edges Ē ⊆ E . A new edge e is independent of
Ē if and only if the graph formed by quadrupling e has no
induced subgraph G′ = (V ′, E ′) with too many edges, i.e.,
|E ′| > 2|V ′|, where V ′ is the set of vertexes spanned by the
set of edges E ′.

Therefore, given a graph G = (V, E) to evaluate the
independence of an edge e against a (possibly empty) set
of independence edges Ē ⊆ E we can simply add 3 vir-
tual copies of such an edge e, i.e., quadrupling the edge,
and evaluate that the resulting graph Ḡ = (V, Ē ∪ {e})
has no induced subgraph G′ = (V ′, E ′) with too many
edges, i.e., |E ′| > 2|V ′|. Notably, Lemma 1 reduces the
complexity of independence testing to that of counting
edges in subgraphs once the new edge is quadrupled.
This intuition is embedded in the pebble game algorithm
which we are now briefly going to describe.

Consider a graph G = (V, E) where we associate a
node with each v ∈ V , give to each node two pebbles
which can be assigned to an edge in E . Our goal in
the pebble game is to assign the pebbles in G such that
all edges are covered, i.e., a pebble covering. In finding a
pebble covering, we allow the assignment of pebbles by
node i only to edges incident to i in G. Further, we allow
pebbles to be rearranged only by removing pebbles from
edges which have an adjacent vertex with a free pebble.
The adjacent vertex can then use its free pebble to cover
the edge, freeing the previously assigned pebble for
assignment elsewhere; a so-called shift operation. If we
consider pebble assignments as directed edges exiting
from an assigning node i, when a pebble is needed in
the network to cover an edge (i, j), a pebble search over
a directed network occurs. During the pebble search
if a free pebble is found, the rules for pebble shifting
then allow the network pebbles to be rearranged in
order to assign a free pebble to edge (i, j). If there
exists a pebble covering for an independent edge set
Ē with a quadrupled edge (i, j) /∈ Ē , it follows that
the set Ē ∪ {(i, j)} is independent. Rigidity evaluation
then operates iteratively as follows: every edge e ∈ E
is quadrupled, and an attempt to expand the current
pebble covering for Ē to each copy of e is made, with
success resulting in Ē ← Ē ∪ e and termination coming
when |Ē | = 2n − 3. The reader is referred to [25] for a
detailed description of the centralized algorithm.

Our decentralization of the above pebble game in its
most simple form introduces leader election to decentral-
ize the consideration of network edges for independence.
An execution of the algorithm begins with the initiation
of an auction for electing a node in the network to
become the leader. Specifically, to each node i ∈ V we
associate a bid for leadership ri defined as the pair
ri = {i, bi} with bi ∈ R≥0 indicating the node’s fitness
in becoming the new leader. As we aim to exploit leader
election to achieve optimality, the bids bi will represent
a local utility metric for the ith node, as we will see.
Denoting the local bid set by Ri = {rj | j ∈ Ni ∪ {i}},
the auction then operates according the following max-
consensus process:

ri(t
+) = argmax

rj∈Ri

(bj) (1)

where the notation t+ indicates a transition in ri af-
ter all neighboring bids have been collected through
messaging. As G would be controlled to be rigid,
it will also be connected for all time, and thus
(1) converges uniformly to the largest leadership bid
ri = argmaxrj(0)(bj(0)), ∀ i, j ∈ V after some finite
time [39].

Remark 1. Note that, in general there may exist different
bids with the same value, albeit this is quite rare in
the case of continuum weights. In this case, the argmax
function should be slightly modified to take into account
also the node ID i (which is unique) for the selection. For

IEEE TRANSACTIONS ON MOBILE COMPUTING 5

example, any time two bids bi and bj are identical, then
the pair ri = {i, bi} with i < j could be selected.

After convergence of (1) the winning node then takes
on the leadership role, with the previous leader releasing
its status. The proposed auction mechanism allows us to
decentralize the pebble game by assigning to each leader
the responsibility of expanding Ē by evaluating only
their incident edges for independence, yielding local sets
Ēi, with Ē = ∪i Ēi. In determining edge independence,
pebbles are queried from the network through a pebble
exchange protocol (as detailed in [38]) in order to cover
each copy of a quadrupled incident edge. Leadership
then transfers to the next auction winner when the
current leader’s neighborhood has been exhausted.

As the node with the largest bid is elected, the bids
dictate the order of elected leaders and thus the edges
that constitute the identified rigid subgraph. The pro-
posed auction technique therefore affords us control over
Ē that goes beyond simply discovering the network’s
rigidity property. Thus, based on our results in [38],
we assume that the network can apply a decentralized
(and asynchronous) pebble game to determine with O(n)
complexity the independence of any edge eij in G (rep-
resented in pseudocode by PEBBLEGAME(eij)). We will
then exploit the leader-based mechanism to control the
order and cardinality of considered edges, and ultimately
optimality vs. complexity.

2.3 Matroid Theory and Optimization
The study of matroids is an analysis of an abstract theory
of dependence. Matroids are combinatorial structures
that generalize the notion of linear independence in
matrices.

Definition 1. A matroidM on E is an ordered pair (E , I)
consisting of a finite set E (denoted as the ground set
of M) and a collection I of subsets of E (denoted as
the independent sets of M) satisfying the following three
conditions:

i) ∅ ∈ I.
ii) If I ∈ I and I ′ ⊆ I , then I ′ ∈ I.

iii) If I1 and I2 are in I and |I1| < |I2|, then there is an
element e of I2 \ I1 such that I1 ∪ e ∈ I.

The third condition is called the independence augmen-
tation axiom, and it says that if I1 is independent and
there exists a larger independent set I2 then I1 can
be extended to a larger independent set by adding an
element of I2 \ I1. Condition (iii) implies that every
maximal (inclusion-wise) independent set is maximum;
in other words, all maximal independent sets have the
same cardinality. A maximal independent set is called a
base of the matroidM, while a minimal dependent set is
called a circuit of the matroid M. The following lemma
provides a formalization of the fact all bases share the
same cardinality.

Lemma 2 (Lemma 1.2.1, [28]). If B1 and B2 are bases of a
matroid M, then |B1| = |B2|.

Let us denote with B the collection of bases of a
matroid M, for which the following properties hold:

Lemma 3 (Corollary 1.2.5, [28]). Consider a matroidM on
E and let B be a set of subsets of the set E . Then B is the
collection of bases of a matroid on E if and only if it satisfies
the following conditions:

(B1) B is non-empty.
(B2) If B1 and B2 are members of B and x ∈ B1 \ B2,

then there is an element y ∈ B2 \ B1 such that
(B1 \ x) ∪ y ∈ B.

In this work, we are interested in a family of matroids
denoted as rigidity matroids. In particular, we focus on
the combinatorial characterization of the rigidity matroid
of a graph in R2. More specifically, consider a graph
G = {V, E} in R2, the matroid R2(G) = (E , I) can be
defined according to the Laman edge set independence
conditions, that is the collection I of independent sets of
edges can be defined as follows:

I = {Ē ⊆ E : 2 |V(E ′)| − 3 ≥ |E ′|, ∀ E ′ ⊆ Ē} (2)

where V(E ′) denotes the set of vertices of V incident to at
least one edge in E ′. If the graph G is rigid, then any base
B corresponds to a Laman subgraph of G. The reader
is referred to [29] for a comprehensive overview of the
topic.

A reason of interest for matroids in the field of com-
binatorial optimization is their association with greedy
algorithms [40]. In particular, the following problem
definition is considered.

Problem 1. Consider a matroid M = (E , I) and let us
suppose there exists a weight function w : M → R+

which assigns a weight to each element of the ground
set E . The goal is to find a base B of M such that the
weight

∑
x∈B w(x) is maximized.

A greedy algorithm which iteratively selects at each
step k the element x ∈ E with the largest weight such
that I(k − 1) ∪ {x} is independent is guaranteed to
converge to a maximal independent set. Furthermore,
it can be proven the base B obtained with this approach
is optimal, that is it maximizes the weight function w
previously defined. Intuitively, this follows from the
independence augmentation axiom in Definition 1, i.e.,
condition (iii), the fact all bases share the same cardi-
nality as detailed in Lemma 2 and the property B2 of
Lemma 3.

3 OPTIMALLY RIGID GRAPH CONSTRUCTION
Let us begin by providing some preliminary assump-
tions and definitions which are instrumental for the
considered optimization problem. Consider a generic
utility function ρ(E) : E → R>0 of the form:

ρ(E) =
∑
eij∈E

wij (3)

IEEE TRANSACTIONS ON MOBILE COMPUTING 6

to be defined over the graph G(V, E). We are now ready
to introduce the definition of an optimal subgraph G∗:

Definition 2. A subgraph G∗(V, E∗) ⊆ G(V, E) is optimal
if:

@ G′(V, E ′) ⊆ G(V, E) : ρ(E ′) > ρ(E∗),

with G∗, G′ minimally rigid. See Fig. 1c and Fig. 1d for an
illustration of an optimal Laman subgraph.

Now, the problem we address in this paper can be
characterized as follows.

Problem 2. Consider a rigid graph G = {V, E} and a
utility function ρ(E) of the form (3). The goal is to find
the optimal subgraph given by:

G∗ = arg max
G′(V,E′)⊆R(G)

{ρ(E ′) : |E ′| ≤ κ} , (4)

where κ = 2n−3 and R(G) denotes the set of all possible
rigid subgraphs of G.

We reiterate that in a decentralized context, Problem 2
becomes particularly interesting for the case of mini-
mally rigid graphs. Optimal edges beyond the point of
minimal rigidity, i.e., κ > 2n − 3, no longer require the
rigidity conditions to be verified. Indeed, at that point
optimality is merely a function of the marginal utility of
each edge. Thus, without loss of generality we will limit
ourself to the construction of minimally rigid graphs,
that is κ = 2n− 3. It is important to note however, that
our proposed algorithms will work for any κ ≥ 2n − 3,
simply by considering the edge independence constraint
only until a minimally rigid graph is constructed.

3.1 Optimal Greedy Algorithm

The Optimal Greedy algorithm (OG) proposed in this
work extends the decentralized version of the pebble
game originally proposed by the authors in [38]. Briefly
speaking, major modifications are made to the bidding
process for leader election and the number of edges each
leader can check for independence at each iteration.

The pseudo-code of the proposed OG algorithm is
depicted in Algorithm 1. Generally speaking, the algo-
rithm works as follows. In steps 2–3, each node initial-
izes the local independent set E∗i and the local set of
edges to check, Ei . Then, the algorithm runs until the
cardinality of the independent set is |E∗(k)| = 2n − 3,
that is an optimal Laman subgraph has been found
at the kth iteration. In particular, the following steps
are executed. First, the bidding process for the leader
election detailed in Algorithm 2 is run (step 6). Then, the
chosen leader selects (and removes) from the local set of
candidates the edge with maximum weight and checks
its independence by running the decentralized pebble
game according to Algorithm 3. This edge is then added
to the local independent edge set if the check succeeds,
or it is removed otherwise. Let us now further detail the
three algorithms mentioned above.

Algorithm 1 The Optimal Greedy Algorithm.
1: procedure OPTGREEDY(G = (V, E))
2: E∗i (0) = {∅}, ∀i ∈ I
3: Ei(0)← Sort ({eij : j ∈ Ni}) , ∀i ∈ I
4: k ← 1

5: repeat
6: . Compute the bids for each i:
7: {bi(k), emax

ij (k)} ←COMPUTEBID(i, Ei(k − 1))
8: . Auction for leader with maximum bid:
9: l← arg max

i
bi(k)

10: . Leader checks emax
lj (k) independence:

11: E∗l (k)←LEADERRUN(l, E∗l (k − 1), emax
lj (k))

12: . Remove already considered edges:
13: El(k) = El(k − 1) \ {emax

lj (k)}
14: Ej(k) = Ej(k − 1) \ {emax

jl (k)}
15: k ← k + 1

16: until |E∗(k)| = | ∪i E∗i (k)| = 2n− 3

17: end procedure

Algorithm 2 computes the bids for each node before
the leader election step. The value of the bid is de-
termined according to the cardinality of the set Ei(k),
i.e., the set of candidate edges at step k. If this set is
empty, i.e., all the incident edges have been checked,
zero is assigned to the bid (step 6). As will be explained
in the following, a leader is elected by the algorithm
if it submits the largest bid. Therefore, a bid of zero
prevents node i from becoming a leader. If |Ei(k)| 6= 0,
then the maximum weight among the candidates edges
is computed and used as the bid (step 3). Using the
largest weight as a bid guarantees that the solution is
incrementally built considering the graph edges in a
decreasing order with respect to their weights. The edge
corresponding to the maximum weight in Ei(k) is stored
by each node i in emax

ij (k) because if i is elected as the
next leader, then emax

ij (k) is the edge whose indepen-
dence has to be checked (step 4). Algorithm 3 describes
the leader execution. In step 2, the decentralized pebble
game originally introduced by the authors in [38] is used
for checking the independence of emax

lj (k). If the check
succeeds, then the edge is added to the ith local set of
independent edges in step 4.

In light of the matroid theory briefly described in
Section 2.3, we now demonstrate the optimality and
complexity properties of the proposed distributed OG
algorithm.

Theorem 4 (Greedy Algorithm Optimality). The solution
G∗(V, E∗) ⊆ G(V, E) built incrementally according to Algo-
rithm 1 is optimal.

Proof: Let us consider the first iteration of the al-
gorithm, i.e, k = 1. The bid choice in Algorithm 1
guarantees that the edge emax

lj (1) with maximum weight
is selected and added to the independent set E∗l (1) with l

IEEE TRANSACTIONS ON MOBILE COMPUTING 7

Algorithm 2 Compute bid and maximum weight edge.
1: procedure COMPUTEBID(i, Ei(k − 1))

2: if Ei(k − 1) 6= {∅} then
3: bi(k) = max

eij∈Ei(k−1)
wij

4: emax
ij (k) = arg max

eij∈Ei(k−1)
wij

5: else
6: bi(k) = 0

7: end if
8: end procedure

Algorithm 3 The leader execution.
1: procedure LEADERRUN(l, E∗l (k − 1), emax

lj (k))
2: ind←PEBBLEGAME(emax

lj (k))
3: if ind is true then
4: E∗l (k) = E∗l (k − 1) ∪ {emax

lj (k)}
5: end if
6: end procedure

the index of the current leader. Therefore the value of the
objective function computed using E∗(1) is maximum.
Let us now consider the generic kth iteration, with k > 1.
From line 2 of Algorithm 3 it follows that two outcomes
are possible, that is either emax

lj (k) is independent or
emax
lj (k) is redundant. If the edge is independent, then it

must be |E∗(k − 1)| < 2n− 3, otherwise the edge would
be redundant. Thus, the insertion of emax

lj (k) (line 4)
guarantees that the objective function computed using
the edges in E∗(k) = E∗(k− 1) ∪ {emax

lj (k)} is maximum
because of the emax

lj (k) definition. On the other hand, if
the edge emax

lj (k) is redundant we cannot simply add this
edge to the current independent set E∗(k−1). Recall that
according to Problem 2 the solution must be a Laman
subgraph. Thus as E∗(k− 1) ∪ {emax

lj (k)} is not a Laman
subgraph, emax

lj (k) must be discarded. Alternatively, ac-
cording to property B2 of Lemma 3, we could exchange
the edge emax

lj (k) with any element eij ∈ E∗(k − 1).
However, this would not result in any improvement of
the objective function as emax

lj (k) ≤ eij , eij ∈ E∗(k − 1).
Notice that in the case of equality, allowing the exchange
simply would result in an alternative optimal solution,
which is not of interest, as in this work all optimal
solutions are considered to be equivalent.

In the following proposition, the communication com-
plexity of the algorithm, in terms of number of ex-
changed messages, is characterized.

Proposition 1 (Greedy Algorithm Complexity). Algo-
rithm 1 exhibits a O(n3) worst case per-node communication
complexity for the leader election process.

Proof: In the leader election process each node sends
O(n) messages for each auction [41, Theorem 1]. Now,
since in the worst case, all the edges of the network
are analyzed, then O(n2) auctions must be executed.

Therefore, the overall messaging complexity per-node
becomes O(n3).

3.2 Heuristic Sub-Optimal Algorithm

In this section we introduce a modified algorithm, de-
noted as the SO algorithm, by which the complexity
of the OG algorithm can be mitigated. To this end,
we modify the OG algorithm by introducing a tuning
parameter ξ which represents the number of edges to
be checked for independence at each leader election. As
in the previous section, let us assume that each node
i is able to sort its incident edges Ei according to the
associated weights wij . Before the algorithm execution,
a parameter ξ ∈ [1, . . . , n− 1] is chosen. It represents the
maximum number of edges that an elected leader is al-
lowed to check for independence. This parameter is used
by modified versions of COMPUTEBID and LEADERRUN
algorithms previously described. Briefly, these functions
are extended to deal with sets of edges rather than a
single edge as in the optimal algorithm.

In the modified bid computation algorithm, the bid
for the leader auction process is computed by each
node summing up the first ξ edge weights and the
edges themselves are stored in Eξi . This represents a
conservative approach to maximize the increase of the
solution at step k + 1, even though this may lead to a
sub-optimal solution. Likewise, in the modified leader
run algorithm, the edges in the set Eξi are checked for
independence. Each edge is inserted into the ith portion
of the independent set after a successful independence
check, it is removed otherwise.

In allowing each elected leader to insert ξ edges we
may deviate from the greedy edge ordering that leads
us to the optimal rigid subgraph. The parameter ξ
yields what is effectively a lazy auction controlling the
evaluation of edge independence. We expect that the
network size n and the queue size ξ will factor into
the optimality gap experienced by the SO algorithm. Let
us denote with E∗ the optimal solution built by the OG
algorithm and Ê∗(k) the sub-optimal set built up to the
k-th auction by the SO-algorithm. Similarly to [40], the
following inequality holds for any auction k:

ρ(E∗) ≤
∑

(i,j)∈Ê∗(k)

wij +
∑

(i,j)∈E∗\Ê∗(k)

wij . (5)

Now, let us consider k to be the auction for which a com-
plete suboptimal solution is built. Then by applying (5)
we have:

ρ(E∗) ≤ ρ(Ê∗) + |Ẽ | (ξ − 1) ρ(Ê∗)

where Ẽ = E \ E∗ denotes the set of redundant edges for
which |Ẽ | = (|E| − 2n+ 3). Finally we can conclude with
the following bound on the quality of our suboptimal
solution:

ρ(Ê∗)
ρ(E∗)

≥ 1

1 + |Ẽ | (ξ − 1)
(6)

IEEE TRANSACTIONS ON MOBILE COMPUTING 8

Like [40], we point out that while this bound is in general
not tight, its soundness is corroborated by the fact the
when either Ẽ → 0 and ξ → 1, the suboptimal solution
correctly approaches the optimal one.

Let us now analyze the messaging complexity exhib-
ited by the algorithm:

Proposition 2 (Lazy Algorithm Complexity). The modi-
fied algorithm exhibits a O(n3/ξ) worst case per-node com-
munication complexity for the leader election process.

Proof: In the leader election process each node sends
O(n) messages for each auction. In the case of a fully
connected graph, O(n2) edges must be inspected. Then,
O(n2/ξ) auctions must be executed. Therefore, the over-
all messaging complexity per-node becomes O(n3/ξ).

Remark 2. It is worthy to note that if ξ → 1, the per-node
messaging complexity is O(n3) as the sub-optimal algo-
rithm collapses to the greedy optimal version. Instead,
if ξ → n−1 the per-node complexity becomes quadratic,
i.e., O(n2). Thus ξ behaves exactly like a sliding mode
control, trading off complexity with optimality.

3.3 Optimal Parallel Algorithm

While the complexity of the OG and SO algorithms is
reasonable for scalable implementation (i.e., polynomial
in network size), it is clear that execution is inherently
serial. The nature of edge independence requires such
a serial implementation in general; the independence of
a given edge must be determined relative to those edges
previously considered. However, we would like to better
exploit our decentralized setting by allowing the optimal
independent edge set to be built, at least partially, in
parallel.

Despite the global scope of the rigidity property, we
can make two observations that guarantee optimal edge
independence by examining only local information. First,
taking inspiration from the Henneberg operations for rigid
graph construction [24], it follows that any rigid graph
must possess nodes with at least degree two. This im-
plies that any edge incident to a node with degree less
than two must be independent by construction. Second,
as a consequence of rigid matroid optimization, a greedy
edge ordering leads us to the optimal solution, and thus
we can conclude that every optimal edge must be within
the first two highest weighted edges for either (or both)
of its endpoints. Although we formalize the preceding
reasoning later, these simple rules are sufficient to con-
struct an algorithm that builds in parallel a portion of
the optimal independent edge set.

Let us now outline our Optimal Parallel Algorithm
(OP). First, we assume execution and messaging operates
according to an asynchronous model of time (e.g., as in
[42]), and that each node acts according to their own
local (and potentially unsynchronized) clock. Further,
we assume that nodes handle messages in a first-in-
first-out way, and that all local execution and message

Algorithm 4 Parallel execution logic for node i.
1: procedure PARALLELRUN(i)
2: if ei , (i, j) 6= 0 ∧Mi < 2 then . Next edge
3: EDGEREQUESTMSG(i, j)
4: requestedFrom(i)← j
5: return
6: end if
7: . All local edges checked:
8: idle(i)← Yes
9: end procedure

handling occurs atomically (i.e., without race condi-
tions). The true complexity of the algorithm is dealing
with coherence in an asynchronous setting. Specifically,
in order to enforce our local rules for optimal inde-
pendence, we associate with each node the following
variables: committed(i) ∈ Z≥0, Mi ∈ Z≥0, and best(i).
The commitment variable stores the cardinality of i as an
endpoint of edges in the distributed independent edge
set, or more formally, the node degree of vi in the graph
G∗ = (V, ∪i∈V E∗i). Further, for each node i we keep a
counter of the number of maximal edges that have been
checked, denoted by Mi. Finally, the two maximal edges
incident to node i are in the set best(i).

As opposed to the leader-based execution of the OG
and SO algorithms, here every node executes concur-
rently according to Algorithm 4. The precondition for
execution is that the incident edge set Ei is sorted in de-
scending order, the currently considered edge ei is set to
the maximum for node i, committed(i) = 0, and Mi = 0,
for all i. As reflected in lines 2-6, each node simply iter-
ates through their sorted incident edge set, sending for
each edge a request message EDGEREQUESTMSG(i, j),
blocking execution until a response is received. The
request message indicates node i’s desire to add an
incident edge to the optimal independent set, and thus
allows agreement between edge endpoints on the rules for
optimal independence. The checking of incident edges
stops when either the set Ei is empty (denoted by ei = 0),
or node i (or one of its neighbors) has checked both of
the edges in best(i), i.e., Mi = 2. At this point, node
i simply enters an idle state and waits until all nodes
have completed execution.

The remaining logic for optimal independent edge se-
lection and rule checking resides in the message handlers
for EDGEREQUESTMSG(i, j), depicted in Algorithms 5
and 6. The reception of an edge request message by
node i from neighbor j ∈ Ni triggers the message
handling logic HANDLEEDGEREQUEST(i, j). As all nodes
are trying to add incident edges to the independent
edge set simultaneously, it may be the case that two
nodes sharing an edge conflict on which node takes
the edge, specifically as both cannot. Thus, receiving
node i first determines whether a request represents a
conflict over edge (i, j). Conflicts are resolved in lines 3-
7 of Algorithm 5, where we make the basic assumption

IEEE TRANSACTIONS ON MOBILE COMPUTING 9

Algorithm 5 Parallel request handler for node i.
1: procedure HANDLEEDGEREQUEST(i, j)
2: response ← committed(i)
3: if requestedFrom(i) = j then . Edge contention
4: if Mi < 2 ∧ (i < j ∨Mj ≥ 2) then
5: response ← −1 . Ensure i wins edge
6: end if
7: end if
8: EDGERESPONSEMSG(i, j, response)
9: . Count independent edge commitments:

10: if response 6= −1 ∧ committed(i) < 2 then
11: committed(i)← committed(i) + 1
12: end if
13: . Count maximally weighted edges checked:
14: if wij ∈ best(i) ∧ response 6= −1 then
15: Mi ←Mi + 1
16: end if
17: . Do not double check (i, j):
18: Ei ← Ei − (i, j)
19: end procedure

Algorithm 6 Parallel response handler for node i.
1: procedure HANDLEEDGERESPONSE(i, j, response)
2: if response 6= −1 ∧
3: (response < 2 ∨ committed(i) < 2) ∧Mi < 2 then
4: E∗i ← E∗i ∪ (i, j)
5: committed(i)← committed(i) + 1
6: end if
7: . Count maximally weighted edges checked:
8: if wij ∈ best(i) ∧ response 6= −1 then
9: Mi ←Mi + 1

10: end if
11: . Go to next largest incident edge:
12: Ei ← Ei − (i, j)
13: ei ← arg max(i,j)∈Ei(wij)
14: end procedure

that node label is one of the factors in determining a
conflict winner. Note however that node label alone is
insufficient, as a node cannot win a conflict when it has
exhausted its local maximally weighted edge set. Thus,
we introduced the extra logic in the conflict resolution
(line 4). Now, after handling potential conflicts, receiver i
then responds to j via EDGERESPONSEMSG(i, j, response)
indicating its current commitment to E∗, increases its
own commitment and maximally weighted edge count
(Mi) to guarantee optimal independence, and removes
(i, j) from Ei to avoid double checking (lines 8-18).

In coherence with the edge request logic, in receiving
an EDGERESPONSEMSG(i, j, response), a node i acts ac-
cording to Algorithm 6. As an edge response conveys
node j’s commitment to E∗, it is validated against the
previously specified rules (lines 2-3), with success re-
sulting in the assignment of (i, j) to Ei, and an incre-
menting of committed(i) (lines 4-5). After independence
preserving assignment, node i increments its maximally

weighted edge count appropriately (lines 8-10), and
moves to consider its next incident edge (lines 12-13).

As we show in the sequel, the parallel algorithm
identifies a portion of the independent set for a given
input graph. Thus, to identify a complete independent
set, we must pass the results of the parallel algorithm to
the OG or SO algorithm, yielding a composite rigidity
evaluation. We omit the basic details of this compos-
ite algorithm, and direct the reader to our previous
work [38], which discusses rigidity parallelization in a
general context.

We are now going to demonstrate the correctness and
complexity of the parallel algorithm. In this regard, the
following proposition is instrumental for the optimality
analysis.

Proposition 3 (Parallel Mutual Exclusivity). Consider the
parallel algorithm given by Algorithms 4, 5 and 6 applied to
a (rigid) graph G = {V, E}. Then the following holds:⋂

i∈V
E∗i = ∅ (7)

Proof: In order to prove the proposition, it is suffi-
cient to show that when an edge eij ∈ E is added to the
optimal local set E∗i (k) of a node i at a time instant k,
the following two conditions are enforced:

eij /∈
⋃
r∈V
E∗r (k−)︸ ︷︷ ︸

(a)

and eij /∈
⋃

r∈V\{i}

E∗r (k+)

︸ ︷︷ ︸
(b)

(8)

with k− ∈ [0, k) and k+ ∈ [k,∞). Condition (a) fol-
lows directly from the incremental consideration of local
edges (lines 2-5 of Algorithm 4 and lines 12-13 of Algo-
rithm 6), the conflict resolution (lines 3-7 of Algorithm 5)
and the removal of local edges on edge request (line 18
of Algorithm 5). Condition (b) follows directly from
the removal of local edges on edge request (line 18 of
Algorithm 5) and the removal of local edges on edge
response (line 12-13 of Algorithm 6).

We now define a structural property of the optimal so-
lution which turns out to provide a convenient condition
for local and yet optimal choices for edge independence.

Proposition 4 (Local Optimal Independence). Consider
Problem 2 having an optimal solution G∗. Define a subset of
independent edges Ê ⊆ E , for which every eij ∈ Ê is within
the first two maximally weighted edges for at least one of the
two endpoints i and j. Then it follows that any such subset
Ê is itself a subset of the optimal solution E∗, i.e., Ê ⊆ E∗.

Proof: In order to prove the proposition, we first
note that the optimal solution E∗ must span the graph,
which follows directly from the Laman conditions of
Theorem 1. Furthermore, in a Laman subgraph any node
by construction must have at least two incident edges.
And thus since the optimal solution follows a greedy
edge consideration, as detailed in Theorem 4, the result
follows.

IEEE TRANSACTIONS ON MOBILE COMPUTING 10

We are now ready to state our main result on the par-
allel algorithm, that is by means of the parallel execution
we can identify a subset of the optimal solution.

Proposition 5 (Parallel Algorithm Optimality). Consider
the parallel algorithm given by Algorithms 4, 5 and 6 applied
to a (rigid) graph G = {V, E}. Then the union of the
optimal local sets is a subset of the optimal solution, that is⋃
i∈V E∗i ⊆ E∗.

Proof: In order to prove the proposition it is sufficient
to notice that by construction the parallel algorithm
builds the sets E∗i by limiting the addition of an edge
eij to a local independent set E∗i only if such an edge
is within the first two maximally weighted edges for
at least one of the two endpoints i and j (see lines 2-6
of Algorithm 6). Then as the union

⋃
i∈V E∗i follows the

property of the subset Ê of Proposition 4 the proposed
condition holds.

The following proposition identifies how much of the
independent set we can identify in a parallel fashion.

Proposition 6 (Parallel Algorithm Performance). Con-
sider the parallel algorithm given by Algorithms 4, 5 and 6
applied to a rigid graph G = {V, E}. Then:

∣∣∣ ⋃
i∈V
E∗i
∣∣∣ ≥ n. (9)

Proof: In order to prove the proposition it is enough
to notice that once the parallel execution terminates,
the set E∗P =

⋃
i∈V E∗i by construction is such that the

resulting graph G∗P = {V, E∗P} has the property that
|Ni(G∗P)| ≥ 2 for all i. Therefore, since in the worst
case scenario these edges may be shared between the
endpoints the lower bound on the number of identified
independent edges is equal to n.

Remark 3. Notably, by making an analogy with com-
petitive analysis (see [43]), this can be seen as building a
subset of the optimal solution with a “competitive ratio”
given by |E∗|/|E∗P | = (2n − 3)/n = 2 − 3/n. Indeed, the
ratio tends to 2 as n goes to infinity, meaning that in
the worst case scenario we identify at least half of the
optimal set of edges, as demonstrated in Fig. 4b.

Remark 4. We reiterate that an important reason of
interest for matroids in the field of combinatorial op-
timization is their association with greedy algorithms.
Therefore, generally speaking the problem formulation
adopted in this work could be easily and effectively
applied to all cost functions for which greedy algorithms
are known to perform well. In this regard, we mention
an important family of functions denoted as submodular
set functions, which have important implications in the
canonical problem of sensor placement [44]. Note that,
in this case our algorithms would achieve suboptimal
solutions with theoretical approximation guarantees.

;(G) = 45:573

Starting Graph G

(a) Starting Graph G.
;(G) = 17:2225

OG-Algorithm

(b) OG Algorithm.

;(G) = 16:9073

SO-Algorithm 9 = 3

(c) SO Algorithm.

;(G) = 16:896

Zelazo et al. Algorithm

(d) Zelazo Algorithm.

Fig. 2. Rigid network composed of 7 vertices running
the OG algorithm, the SO algorithm with ξ = dN/2e and
the centralized algorithm proposed in [31], where edge
thickness denotes normalized utility.

4 SIMULATION RESULTS

In this section we present simulation results that demon-
strate the correctness, complexity and performance of the
proposed algorithms.

4.1 Minimally Rigid Network Optimization

In [31], a centralized algorithm for generating locally
optimal rigid graphs according to a certain optimality
criterion is provided. Briefly, this algorithm consists of
a variation of the Henneberg construction for generat-
ing rigid graphs in the plane by adding performance
requirements and sensing constraints, yielding the opti-
mal vertex addition and edge splitting algorithms. We
demonstrate how our algorithm can extend the state of
the art both through decentralization and optimality.

For the purpose of Monte Carlo analysis, we compare
the algorithm of [31] to our OG and SO algorithms over
randomly generated non-minimally rigid graphs accord-
ing to Problem 2. Figure 2 depicts a typical run of the
algorithms for a rigid network composed of 7 vertices
where the thickness of the edge denotes its normalized
utility. It can be noticed that the OG algorithm provides
the solution with the largest value of the optimization
function ρ(E) = 17.225, while the centralized algorithm
given in [31] provides (as expected) a locally optimal so-
lution ρ(E) = 16.896, and finally the SO-algorithm with
ξ = dN/2e which allows to reduce the communication
cost also provides a sub-optimal solution ρ(E) = 16.9073.

IEEE TRANSACTIONS ON MOBILE COMPUTING 11

jVj
6 8 10 12 14 16 18 20 22 24 26 28 30

;
(E

)

15

16

17

18

19

20

21

22

23

GO
SO 9 = dN=2e
SO 9 = N ! 1
Zelazo et al.

(a) Objective Function Comparison.

jVj
6 8 10 12 14 16 18 20 22 24 26 28 30

#
P
ac

k
et

s

0

50

100

150

200

250

300
GO
SO 9 = dN=2e
SO 9 = N ! 1

(b) Communication Cost Comparison.

Fig. 3. Monte Carlo Analysis for a network with a number
of nodes ranging from 6 to 30. (a) shows a comparison
of the average objective function for the OG algorithm,
the SO algorithm with ξ = dN/2e, the SO algorithm with
ξ = N − 1, the centralized algorithm described in [31],
respectively. (b) shows the average communication cost
for the OG algorithm, the SO algorithm with ξ = dN/2e,
and the SO algorithm with ξ = N − 1, respectively.

Furthermore, we compare the performance of the pro-
posed SO algorithm against the centralized algorithm
in [31] for different values of the tunable parameter ξ.
In particular, Figure 3 depicts the results of Monte Carlo
analysis for a network with a number of nodes ranging
from 6 to 30. For a fixed network size, we consider 50
different graph topology realizations with random (posi-
tive) weights. Fig. 3a depicts the average of the objective
function for the OG algorithm, the SO algorithm with
ξ = dN/2e, the SO algorithm with ξ = N − 1, and
the centralized algorithm described in [31], respectively.
It can be noticed that the OG algorithm as expected
provides always the best (optimal) solution. Notably,
the SO algorithm with different ξ values, although sub-
optimal still provides satisfactory results, comparable
with the (locally) optimal solution given by the cen-
tralized algorithm described in [31]. Fig. 3b shows a
comparison of the average communication cost in terms
of number of packets exchanged for the OG algorithm,
the SO algorithm with ξ = dN/2e, and the SO algorithm
with ξ = N−1, respectively. It can be noticed that, while
providing sub-optimal solutions, the SO-algorithm scales

Network Size (n)
5 10 15 20 25 30

C
lo
ck

T
ic
k
s

0

200

400

600

800

1000

1200

1400

1600

1800

2000
Complexity Comparison

Parallel
Non-parallel

(a) Complexity Comparison.

Network Size (n)
5 10 15 20 25 30

P
er
ce
n
ta
ge

of
Id
en
ti
fi
ed

E
d
g
es

55

60

65

70

75

80

85

90

95

100
Parallel Edge Identification

(b) Parallel Edge Identification.

Fig. 4. (a) Monte Carlo analysis of complexity for the
decentralized OG algorithm, and the OP algorithm, for
networks sizes n ∈ [5, 30]. Complexity is measured in
asynchronous clock ticks, assuming zero communication
delay. (b) Monte Carlo analysis of the percentage of
optimal edges identified by the OP algorithm, for networks
sizes n ∈ [5, 30].

better in terms of the number of packets exchanged
compared to the OG-algorithm.

4.2 Parallel Algorithm Evaluation
In this section, we again use Monte Carlo to demonstrate
the effectiveness of our parallel extension to the OG al-
gorithm. Random non-minimally rigid graphs are again
the basis of comparison in the context of Problem 2.
Fig. 4 depicts the outcome of the Monte Carlo analysis.
In particular, Fig. 4a describes the complexity for the
decentralized optimal algorithm, and the parallel opti-
mal algorithm, for networks sizes n ∈ [5, 30]. Note that,
complexity is measured in asynchronous clock ticks, as-
suming zero communication delay. Furthermore, Fig. 4b
shows the percentage of optimal edges that are identified
by the parallel optimal algorithm, for networks sizes
n ∈ [5, 30].

As expected, it can be noticed that the time complexity
of the parallelization is O(1). Clearly, this follows directly
from the local nature of the rules by which each node
i builds the local independent sets E∗i with i = 1, . . . , n.
That is, the two maximum incident edges are considered
for each node and thus the local algorithm execution

IEEE TRANSACTIONS ON MOBILE COMPUTING 12

does not depend upon the size of the network. Thus
allowing to efficiently identify a significant portion of
the optimal independent set. In addition, the fact that
synchronization is not required renders the implementa-
tion of the overall algorithm practical.

Finally, the Monte Carlo analysis also corroborates
the parallelization performance bound we derived in
Proposition 6. In particular, our results suggest that we
can indeed identify at least half of the optimal indepen-
dent subset with constant complexity. Interestingly, the
asymptotic nature of the competitive ratio pointed out in
Remark 3 is also demonstrated in Fig. 4b. In particular,
it appears that for smaller networks a larger portion of
the optimal set is identified, while the lower bound n is
met as the network size increases.

4.3 Relative Sensing: A Case Study
In this section, Relative Sensing Networks (RSNs) are
considered as a realistic application scenario [34]. By
assuming nodes to have linear (possibly heterogeneous)
dynamics, a useful metrics is proposed in [34], namely
the H2 norm. It allows to investigate the role of the
underlying connection topology on the system norms
mapping the exogenous inputs to the relative sensed
output. In this way a characterization of the robustness
of the network against external disturbances is derived.
In this context, we consider a mobile network with both
spatial and information-based objectives. For the spatial
objective, we assume that the network is required to
disperse in the environment, which is a primitive behav-
ior often found in applications such as coverage, mon-
itoring or tracking. For the information-based objective,
we assume that the network is required to sense and
exchange information to reach a common objective. As
an example, we choose the consensus objective as it repre-
sents a fundamental building-block of various important
information-based applications. Examples include dis-
tributed estimation and filtering, global localization and
clock synchronization. Finally, we require rigidity in the
network to guarantee localizability while also ensuring
connectivity as a by-product. That is, our simulated sys-
tem will achieve dispersion while maintaining the opti-
mal underlying rigid topology for minimizing the impact
of noise on consensus according to the H2 metrics. The
reader is referred to [7] and [32] for a comprehensive
overview of topology-constrained mobility control and
the consensus problem, respectively.

Now, similarly to the mathematical framework for
RSNs proposed in [34], [45], we begin deriving the H2

metrics by consider the following open-loop consensus
model:

ẋ(t) = u(t)

y(t) = E(G)Tx(t) + v(t)
(10)

where x(t) ∈ Rn is an internal state vector, E(G) ∈ Rn×|E|
is the incidence matrix with arbitrary orientation and
v(t) ∈ R|E| is the gaussian zero mean white noise
modeling the channel quantization effects [46], with σ2

ij

the variance for each edge eij ∈ E and σij = σji. We point
out that the considered quantization model is simplified
for the sake of the illustration. Indeed, if our concern
were quantization, there would be more sophisticated
modeling to more effectively approach the problem.

Consider now the following output-feedback control
u(t) = −E(G)y(t) from which the following closed loop
is then obtained:

Σ :

{
ẋ(t) = −L(G)x(t)− E(G)v(t)

z(t) = E(G)Tx(t)
(11)

where L(G) is the symmetric Laplacian matrix com-
monly used to describe multi-agent interaction (see [32]).
Notice that, x(t) is the consensus-variable which could
represent for example a state for clock synchronization
or a shared variable for distributed estimation. Thus, x(t)
is not explicitly position-dependent, although the spatial
position of the nodes dictates the network topology over
which consensus operates (due to proximity limitations),
and on which the H2 metric is dependent.

According to the developments of [45], by means of a
coordinate transformation, the H2 norm for the system
Σ is:

‖Σ‖22 =
∑

(i,j)∈E

σ2
ij . (12)

Then, by assuming wij = σ2
ij we obtain the formulation

of Problem 2 where the utility function is defined as:

ρ(E) = −
∑

(i,j)∈E

σ2
ij . (13)

Fig. 5 depicts a typical run for a spatially inter-
acting mobile RSN composed of 30 nodes performing
a dispersive behavior while preserving rigidity of the
network topology and minimizing the H2 norm for
consensus. In particular, the network is initialized in a
densely connected topology where we generate random
zero mean white noise with variance σ2

ij for each edge
eij ∈ E . Before motion begins, the network computes
with the known noise the optimal topology using our
OG algorithm, and motion is constrained to retain edges
belonging to the optimal topology using [7]. It can be
noticed in the figure how the network dispersion is con-
strained by the underlying optimally rigid topology for
consensus. Indeed, an unconstrained dispersion would
yield uniform relative distances at convergence.

Fig. 6 corroborates the fact that maintaining the opti-
mal topology for consensus yields superior performance
in terms of noise rejection, even while performing an
additional spatial objective. In particular, the blue line
represents the error in the consensus value due to the
effect of noisy edges in the case of the optimal topology,
while the red line represents the error in the case of
maintaining a randomly chosen minimally rigid topol-
ogy. It is important to note that, the results are not
skewed by the number of edges in the chosen topologies
as they are both minimally rigid. Instead, it is our
optimization that identifies the superior topology.

IEEE TRANSACTIONS ON MOBILE COMPUTING 13

[x]

[y
]

−50 0 50 100 150 200

−100

−50

0

50

100

150

(a) Initial configuration at time t = 1.
[x]

[y
]

−50 0 50 100 150 200

−100

−50

0

50

100

150

(b) Intermediate configuration at time
t = 100.

[x]

[y
]

−50 0 50 100 150 200

−100

−50

0

50

100

150

(c) Final configuration at time t = 500.

Fig. 5. Spatially interacting mobile RSN composed of 30 nodes performing a dispersive behavior while preserving
rigidity of the network topology and maximizing the negative H2 norm.

Simulation Time

0 100 200 300 400 500

C
o
n
s
e
n
s
u
s
E
r
r
o
r

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75
Consensus Error Comparison

Optimal
Random

Fig. 6. Consensus error over time, comparing the optimal
H2 topology to a randomly chosen rigid topology.

5 CONCLUSIONS
In this work, the problem of building an optimal rigid
subgraph has been considered. In particular, three decen-
tralized approaches were presented. The first approach
iteratively built an optimal minimally rigid graph by
electing leaders to check the independence of at most a
single incident edge. To mitigate the messaging complex-
ity required by this algorithm, a modified version was
then introduced which allows to scale the complexity
by choosing a parameter ξ governing the number of
weights incorporated in the bids and the number of
edges considered for the independence check. Finally,
a parallelization was presented which was shown to
identify a significant portion of the optimally rigid graph
in constant time. Simulation results were provided to
corroborate the theoretical findings.

REFERENCES
[1] T. Arai, E. Pagello, and L. E. Parker, “Editorial: Advances in

multi-robot systems,” IEEE Transactions on robotics and automation,
vol. 18, no. 5, pp. 655–661, 2002.

[2] A. Gasparri, S. Panzieri, and F. Pascucci, “A spatially structured
genetic algorithm for multi-robot localization,” Intelligent Service
Robotics, vol. 2, no. 1, pp. 31–40, 2009.

[3] Z. Yang and Y. Liu, “Understanding node localizability of wireless
ad hoc and sensor networks,” Mobile Computing, IEEE Transactions
on, vol. 11, no. 8, pp. 1249–1260, Aug 2012.

[4] C. Carletti, M. Di Rocco, A. Gasparri, and G. Ulivi, “A dis-
tributed transferable belief model for collaborative topological
map-building in multi-robot systems,” in Intelligent Robots and
Systems (IROS), 2010 IEEE/RSJ International Conference on, Oct
2010, pp. 554–560.

[5] P. Chand and D. A. Carnegie, “Mapping and exploration in
a hierarchical heterogeneous multi-robot system using limited
capability robots,” Robotics and Autonomous Systems, 2013.

[6] Y. Cao, W. Yu, W. Ren, and G. Chen, “An overview of recent
progress in the study of distributed multi-agent coordination,”
IEEE Transactions on Industrial Informatics, vol. 9, no. 1, pp. 427–
438, 2013.

[7] R. K. Williams and G. S. Sukhatme, “Constrained Interaction and
Coordination in Proximity-Limited Multi-Agent Systems,” IEEE
Transactions on Robotics, 2013.

[8] O. D. Incel, A. Ghosh, B. Krishnamachari, and K. Chintalapudi,
“Fast Data Collection in Tree-Based Wireless Sensor Networks,”
Mobile Computing, IEEE Transactions on, 2012.

[9] T. ElBatt and A. Ephremides, “Joint scheduling and power control
for wireless ad hoc networks,” Wireless Communications, IEEE
Transactions on, 2004.

[10] R. K. Williams and G. S. Sukhatme, “Probabilistic Spatial Mapping
and Curve Tracking in Distributed Multi-Agent Systems,” in IEEE
International Conference on Robotics and Automation, 2012.

[11] I. Talzi, A. Hasler, S. Gruber, and C. Tschudin, “PermaSense:
Investigating Permafrost with a WSN in the Swiss Alps,” in Proc.
of the 4th Workshop on Embedded Networked Sensors, 2007.

[12] J. Gancet, E. Motard, A. Naghsh, C. Roast, M. Arancon, and
L. Marques, “User interfaces for human robot interactions with
a swarm of robots in support to firefighters,” in 2010 IEEE
International Conference on Robotics and Automation (ICRA), 2010.

[13] A. Gasparri, B. Krishnamachari, and G. S. Sukhatme, “A frame-
work for multi-robot node coverage in sensor networks,” Annals
of Mathematics and Artificial Intelligence, vol. 52, no. 2-4, pp. 281–
305, Apr. 2008.

[14] E. Gelal, G. Jakllari, S. V. Krishnamurthy, and N. E. Young,
“Topology Management in Directional Antenna-Equipped Ad
Hoc Networks,” IEEE Transactions on Mobile Computing, 2009.

[15] S. Poduri, S. Pattem, B. Krishnamachari, and G. S. Sukhatme,
“Using Local Geometry for Tunable Topology Control in Sensor
Networks,” IEEE Transactions on Mobile Computing, 2009.

[16] M. Li, I. Stojmenovic, and Y. Wang, “Partial Delaunay triangula-
tion and degree limited localized Bluetooth scatternet formation,”
Parallel and Distributed Systems, IEEE Transactions on, 2004.

[17] T. Eren, P. N. Belhumeur, and A. Morse, “Closing ranks in vehicle
formations based on rigidity,” in IEEE Conference on Decision and
Control, 2002.

[18] B. Anderson, C. Yu, B. Fidan, and J. Hendrickx, “Rigid graph con-

IEEE TRANSACTIONS ON MOBILE COMPUTING 14

trol architectures for autonomous formations,” Control Systems,
IEEE, 2008.

[19] J. Aspnes, T. Eren, D. K. Goldenberg, A. Morse, W. Whiteley,
Y. R. Yang, B. D. O. Anderson, and P. N. Belhumeur, “A Theory
of Network Localization,” IEEE Transactions on Mobile Computing,
2006.

[20] I. Shames, A. N. Bishop, and B. D. O. Anderson, “Analysis of
Noisy Bearing-Only Network Localization,” IEEE Transactions on
Automatic Control, 2013.

[21] B. Jackson and T. Jordan, “Connected rigidity matroids and
unique realizations of graphs,” J. Comb. Theory Ser. B, 2005.

[22] B. Hendrickson, “Conditions for unique graph realizations,”
SIAM J. Comput., 1992.

[23] G. Laman, “On graphs and rigidity of plane skeletal structures,”
Journal of Engineering Mathematics, 1970.

[24] T.-S. Tay and W. Whiteley, “Generating Isostatic Frameworks,”
Structural Topology, 1985.

[25] D. J. Jacobs and B. Hendrickson, “An algorithm for two-
dimensional rigidity percolation: the pebble game,” J. Comput.
Phys., 1997.

[26] D. Zelazo, A. Franchi, F. Allgower, H. H. Bulthoff, and P. R. Gior-
dano, “Rigidity Maintenance Control for Multi-Robot Systems,”
in Robotics: Science and Systems, 2012.

[27] R. K. Williams, A. Gasparri, A. Priolo, and G. S. Sukhatme,
“Distributed Combinatorial Rigidity Control in Multi-Agent Net-
works,” in IEEE Conference on Decision and Control, 2013.

[28] J. G. Oxley, Matroid Theory, ser. Oxford Graduate Texts in Mathe-
matics. Oxford University Press, 1997.

[29] M. Develin, J. Martin, and V. Reiner, “Rigidity theory for ma-
troids,” Comment. Math. Helv., vol. 82, no. 1, pp. 197–233, 2007.

[30] R. Ren, Y.-Y. Zhang, X.-Y. Luo, and S.-B. Li, “Automatic generation
of optimally rigid formations using decentralized methods,” Int.
J. Autom. Comput., 2010.

[31] D. Zelazo and F. Allgower, “Growing optimally rigid formations,”
in American Control Conference, 2012.

[32] R. Olfati-Saber, J. Fax, and R. M. Murray, “Consensus and Co-
operation in Networked Multi-Agent Systems,” Proceedings of the
IEEE, vol. 95, no. 1, pp. 215–233, Jan. 2007.

[33] M. De Gennaro and A. Jadbabaie, “Decentralized control of
connectivity for multi-agent systems,” in Decision and Control,
2006 45th IEEE Conference on, Dec 2006, pp. 3628–3633.

[34] D. Zelazo and M. Mesbahi, “Graph-Theoretic Analysis and Syn-
thesis of Relative Sensing Networks,” IEEE Transactions on Auto-
matic Control, 2011.

[35] B. Roth, “Rigid and Flexible Frameworks,” The American Mathe-
matical Monthly, 1981.

[36] L. Asimow and B. Roth, “The rigidity of graphs, II,” Journal of
Mathematical Analysis and Applications, 1979.

[37] H. Gluck, “Almost all simply connected closed surfaces are rigid,”
in Geometric Topology, 1975.

[38] R. K. Williams, A. Gasparri, A. Priolo, and G. S. Sukhatme,
“Decentralized Generic Rigidity Evaluation in Interconnected Sys-
tems,” in IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2013.

[39] D. P. Bertsekas, “The auction algorithm: A distributed relaxation
method for the assignment problem,” Annals of Operations Re-
search, 1988.

[40] G. Nemhauser, L. Wolsey, and M. Fisher, “An analysis of approx-
imations for maximizing submodular set functions?i,” Mathemat-
ical Programming, vol. 14, no. 1, pp. 265–294, 1978.

[41] A. Fagiolini, M. Pellinacci, G. Valenti, G. Dini, and A. Bicchi,
“Consensus-based distributed intrusion detection for multi-robot
systems,” in Robotics and Automation, 2008. ICRA 2008. IEEE
International Conference on, 2008.

[42] A. Nedic, “Asynchronous Broadcast-Based Convex Optimization
over a Network,” IEEE Transactions on Automatic Control, 2010.

[43] A. Borodin and R. El-Yaniv, Online Computation and Competitive
Analysis. New York, NY, USA: Cambridge University Press, 1998.

[44] A. Krause and D. Golovin, Tractability (Practical Approaches to Hard
Problems). Cambridge, United Kingdom: Cambridge University
Press, 2014, ch. Submodular function maximization.

[45] D. Zelazo and M. Mesbahi, “Edge agreement: Graph-theoretic
performance bounds and passivity analysis,” Automatic Control,
IEEE Transactions on, vol. 56, no. 3, pp. 544–555, March 2011.

[46] B. Widrow, I. Kollar, and M.-C. Liu, “Statistical theory of quan-
tization,” Instrumentation and Measurement, IEEE Transactions on,
vol. 45, no. 2, pp. 353–361, Apr 1996.

Andrea Gasparri received the cum laude de-
gree in computer science and the Ph.D. degree
in computer science and automation, both from
the University of Roma Tre, Rome, Italy, in 2004
and 2008, respectively.

He has been a Visiting Researcher at sev-
eral institutions, including the Université Libre de
Bruxelles, Brussel, Belgium, City College of New
York, New York, NY, USA, and the University of
Southern California, Los Angeles, CA, USA. He
is currently an Assistant Professor with the De-

partment of Engineering, University of Roma Tre. His current research
interests include mobile robotics, sensor networks, and more generally
networked multiagent systems.

Dr. Gasparri was the recipient of the Italian grant FIRB Futuro in
Ricerca 2008 for the project Networked Collaborative Team of Au-
tonomous Robots funded by the Italian Ministry of Research and Ed-
ucation (MIUR).

Ryan K. Williams received the B.S. degree in
computer engineering from Virginia Polytechnic
Institute and State University in 2005 and the
Ph.D. degree in electrical engineering from the
University of Southern California in 2014. He
is currently a research affiliate at the Robotic
Embedded Systems Laboratory. His research
interests include control, cooperation, and intel-
ligence in distributed multi-node systems, topo-
logical methods in cooperative phenomena, and
distributed algorithms for optimization, estima-

tion, inference, and learning. Ryan K. Williams is a Viterbi Fellowship
recipient, has been featured by various news outlets, including the L.A.
Times, and has a patent pending for his work on high-speed AUVs.

Attilio Priolo received the Master degree in
Computer Science and Automation Engineering
in 2009 and the Ph.D degree on Computer Sci-
ence and Automation Engineering in 2013, both
at Roma Tre University, in Rome, Italy. Currently,
he is employed as Unmanned Vehicle Engineer
in the Research and Innovation Department at
Info Solution S.p.A.

Gaurav S. Sukhatme is a Professor of Com-
puter Science (joint appointment in Electrical
Engineering) at the University of Southern Cal-
ifornia (USC). He received his undergraduate
education at IIT Bombay in Computer Science
and Engineering, and M.S. and Ph.D. degrees
in Computer Science from USC. He is the co-
director of the USC Robotics Research Labora-
tory and the director of the USC Robotic Em-
bedded Systems Laboratory which he founded
in 2000. His research interests are in robot net-

works with applications to environmental monitoring. He has published
extensively in these and related areas. Sukhatme has served as PI
on numerous NSF, DARPA and NASA grants. He is a Co-PI on the
Center for Embedded Networked Sensing (CENS), an NSF Science and
Technology Center. He is a fellow of the IEEE and a recipient of the
NSF CAREER award and the Okawa foundation research award. He is
one of the founders of the Robotics: Science and Systems conference.
He was program chair of the 2008 IEEE International Conference on
Robotics and Automation and is program chair of the 2011 IEEE/RSJ
International Conference on Intelligent Robots and Systems. He is the
Editor-in-Chief of Autonomous Robots and has served as Associate
Editor of the IEEE Transactions on Robotics and Automation, the IEEE
Transactions on Mobile Computing, and on the editorial board of IEEE
Pervasive Computing.

