
1

Robotic Message Ferrying for Wireless
Networks using Coarse-Grained Backpressure

Control
Shangxing Wang, Andrea Gasparri, Member, IEEE, and Bhaskar Krishnamachari, Member, IEEE

Abstract—We formulate the problem of robots ferrying messages between statically-placed source and sink pairs that they can
communicate with wirelessly. We first analyze the capacity region for this problem under ideal conditions. We indicate how robots could
be scheduled optimally to satisfy any arrival rate in the capacity region, given prior knowledge about arrival rate. We then consider the
setting where the arrival rate is unknown and present a coarse-grained backpressure message ferrying algorithm (CBMF) for it. In
CBMF, the robots are matched to sources and sinks once every epoch to maximize a queue-differential-based weight. The matching
controls both motion and transmission for each robot. We show through analysis and simulations the conditions under which CBMF
can stabilize the network, and its corresponding delay performance. From a practical point of view, we propose a heuristic approach to
adapt the epoch duration according to network conditions that can improve the end-to-end delay while guaranteeing the network
stability at the same time. We also study the structural properties with its explicit delay performance of the CBMF algorithm in a
homogeneous network.

Index Terms—Message ferrying, Robotic wireless networks, Backpressure, Adaptive algorithm

F

1 INTRODUCTION

SINCE the work by Tse and Grossglauser [1], it has been
known that the use of delay tolerant mobile communica-

tions can dramatically increase the capacity of wireless net-
works by providing ideal constant throughput scaling with
network size at the expense of delay. However, though the
idea of message ferrying using controllable mobility nodes
dates back to the work by Zhao and Ammar [2], nearly all
the work to date has focused on message ferrying in inter-
mittently connected mobile networks where the mobility is
either unpredictable, or predictable but uncontrollable. With
the rapidly growing interest in multi-robot systems, we are
entering an era where the position of network elements can
be explicitly controlled in order to improve communication
performance.

This paper explores the fundamental limits of roboti-
cally controlled message ferrying in a wireless network.
We consider a setting in which a set of K pairs of static
wireless nodes act as sources and sinks that communicate
not directly with each other (possibly because they are
located far from each other and hence cannot communicate
with each other at sufficiently high rates) but through a set
of N controllable robots. We assume there is a centralized
control plane responsible for scheduling robots. Because
it collects only queue state information about all network
entities, this centralized plan can be relatively inexpensively

• S. Wang and B. Krishnamachari are with the Ming Hsieh Department of
Electrical Engineering, University of Southern California, Los Angeles,
CA, 90007.
E-mail: shangxiw@usc.edu and bkrishna@usc.edu

• A. Gasparri is with the Department of Engineering, Roma Tre University,
Rome, Italy.
E-mail: gasparri@dia.uniroma3.it

created either using infrastructure such as cellular / WiFi,
or through a low-rate multi-hopping mesh overlay.

We mathematically characterize the capacity region of
this system, considering ideal (arbitrarily large) settings
with respect to robot mobility and scheduling durations.
Our analysis shows that with N = 2K robots the system
could be made to operate at full capacity (arbitrarily close
to the throughput that could be achieved if all sources and
sinks were adjacent to each other). We indicate how any
traffic that is within the capacity region of this network
can be served stably if the data arrival rate is known
to the scheduler. We then consider how to schedule the
robots when the arrival rate is not known a priori. For this
case, we propose and evaluate a queue-backpressure based
algorithm for message ferrying that is coarse-grained in the
sense that robot motion and relaying decisions are made
once every fixed-duration epoch. We show that as the epoch
duration and velocity of robots both increase, the through-
put performance of this algorithm rapidly approaches that
of the ideal case. In addition, to improve the performance
of the CBMF algorithm in practice, we design a heuristic
scheme to show how one can adapt network settings accord-
ing to network conditions to reduce delay with a guaranteed
throughput performance. What’s more, to gain insights on
its implementation in practice, we also conduct a study on
the structural properties and corresponding performance
of the CBMF algorithm in a homogeneous network where
all source-sink pairs have same data arrival rate and same
delivery distance.

In summary, the major contributions of this paper are

• Developing a framework to mathematically char-
acterize the capacity and delay performance of a
robotic wireless network.

2

• Proposing the Coarse-Grained Backpressure-based
Message Ferrying (CBMF) algorithm that works for
unknown arrival rate and studying its corresponding
capacity and delay performance.

• Designing a heuristic approach to adapt network set-
tings to keep the network stable while maintaining
small delay.

• Studying the structural properties and explicit delay
performance of the CBMF algorithm in a multi-flow
homogeneous network.

The rest of the paper is organized as follows: In Section
2, the related work is reviewed; In Section 3 we describe
our problem formulation; in Section 4 we present how to
schedule robots if the arrival rate is known, while in Section
5 we propose the CBMF for unknown arrival rate and
study its capacity and delay performance; In Section 6 we
propose an heuristic approach to adapt the epoch duration;
The structural properties of CBMF algorithm are studied in
Section 7; In Section 8, numerical results are presented to
validate our analysis and we conclude this paper in Section
9.

2 RELATED WORK

In the mobile networking community, controlled mobility
has become a new design dimension to improve the network
performance. In [2], Zhao et al. introduces the concept of
message ferries, which are mobile devices that can proactively
move around by following their pre-designed routes to help
deliver data. Based on the idea of non-random movement,
they propose a proactive routing scheme for a single ferry to
provide regular connectivity for disconnected static wireless
ad hoc networks. Later works start to consider more general
cases, such as multi-ferry control [3] and delay tolerant
networks [4]. Meanwhile in [5], Goldenberg et al. consider
mobility as a network control primitive, and present the first
distributed and self-adaptive mobility control scheme for
improving communication performance.

On the other hand, controlled mobility is always an
active research area in the robotics community. In coor-
dinated robots systems, mobility controllers of agents can
be designed through local interactions to allow robots to
perform useful collective behaviors such as flocking [6],
formation control [7] and swarming [8]. Though communi-
cation plays a critical role in the coordinated systems, none
of these works consider practical communication models
but only a simple disc model, which does not fit in a realistic
environment and thus degrades the performance.

In recent years, with the advent of the integration of
mobile robotics and wireless networking, realistic commu-
nication factors together with routing issues have become
an emerging research topic. Researchers in [9] have stud-
ied an integrity problem where controllers of robots are
designed to conduct some task while maintaining certain
desired end-to-end transmission rates at the same time. A
robotic router formulation problem has been studied in [10],
where an optimal configuration of robots is formulated to
maintain a maximized successful reception rate in realis-
tic communication environments that naturally experience
path loss, shadowing, and multipath fading. The expected
number of transmissions per successfully delivered packet

(ETX) has also been taken into consideration in [11], where
researchers design a hybrid architecture to allow robots
optimally configured so that each flow has a minimized ETX
in a multiple flow network. All of these works consider the
joint robotic control and transmission scheduling based on
a convex optimization approach, while our work designs
schemes from a queue-awareness perspective.

Inspirations for this work came from the backepres-
sure scheduling and routing in wireless networks. In [12],
Tassiulas and Ephremides propose the original idea of
backpressure-based queue weight maximization scheduling
scheme, and show that it can guarantee the stability of a gen-
eral network for any arrival rate within an optimal capacity
region. The essence of backpressure scheduling is to prior-
itize transmissions over links that have the highest queue
differentials. This mechanism is, to some extend, similar to
a gradient descent approach where the gradient refers to
queue differential. Later, researchers incorporate the original
results with utility optimization and presents backpressure
scheduling is a throughput-optimal and simple network
protocol that can integrate medium access, routing, rate and
power control for all kinds of networks [14]- [19]. However,
large queue sizes have to be maintained when applying
backpressure scheduling, which can cause inevitably long
delay in the network. Techniques and methods to improve
its delay performance have been considered in both theory
and practice [21]- [27]. In this work, we combine the idea
of backpressure scheduling with robotic control to jointly
control the movement and routing in the robotic wireless
network. Not only a certain capacity region can be guar-
anteed, the delay performance can also be controlled via a
tunable parameter.

Closely related to this work are our two recent confer-
ence publications [28], [29]. In [28], we initially propose the
idea of queue-aware joint robotic control and transmission
scheduling, and design the CBMF algorithm. Built upon our
initial work [28], we in this work conduct complete capacity
and delay performance analysis of the CBMF algorithm
and find a heuristic approach to adapt network settings
according to network conditions with the purpose to reduce
the network delay while maintaining the network stability
at the same time. In [29], we propose a fine-grained back-
pressure message ferrying algorithm (FBMF) where robots’
allocation decision is made in a much finer manner by
also taking current transmission rates into consideration.
It shows that the FBMF algorithm is throughput optimal
for the simplest setting, which is single-flow, single-robot,
deterministic arrival. But there is no certain answer about
its performance in a general case. In contrast to [29], we in
this work study the robotic message ferrying problem with
multiple flows and multiple robots in a general scenario,
and propose a CBMF algorithm whose throughput perfor-
mance approaches the ideal capacity region in the general
case. Furthermore, delay performance is also studied in this
work to gain more understanding.

3 PROBLEM FORMULATION

We consider a network where there are K pairs of static
source and destination nodes located at arbitrary locations
in a a two- or three-dimensional Euclidean space. Let the

3

source for the ith flow be denoted as src(i), and the desti-
nation or sink for that flow be denoted as sink(i). Packets
arrive at a source following either a deterministic process or
an i.i.d. stochastic process, and the arrival rate at source i is
a constant �

i

1. A list of notations is presented in Table 1.
There are N mobile robotic nodes in the same space that

act as message ferries, i.e. when they talk to a source node,
they can collect packets from it, and when they talk to a
sink node, they can transmit packets to it. These robotic
message ferries are special helper nodes whose mobility
can be controlled to assist communication and enhance
the connectivity in a wireless networks. For simplicity, we
assume that the static nodes do not communicate directly
with each other, but rather only through the mobile robots.
Also we, following most previous works ([3], [4]) as well as
considering the fact that current hardware cannot support
one node simultaneously talking to multiple other notes,
assume that a static source or sink node can talk to at most
one robot at any time, which indicates at most 2K robots
are needed. Thus, in the following, we assume N 2K .

Time is divided into discrete time steps of unit duration,
and every T time steps there is a new epoch. At the start
of each epoch, a centralized scheduler can collect useful
information from source and sink nodes as well as mobile
robots, and use this information to allocate each robot to
either a source or sink. The matching is represented by
an allocation matrix A such that A(i, j) is 0 if the robot j
is not allocated to either source or sink for flow i, 1 if it
is allocated to src(i), and �1 if it is allocated to sink(i).
When a robot is allocated to a given source (or sink), for
the rest of that epoch it moves with a uniform velocity v
along the straight line directly to the assigned node until it
reaches its position. At all time steps of that epoch that robot
will communicate continuously and exclusively with that
source (or sink) to collect (or deliver, in case of the sink) any
available packets at a rate depending on its current distance
to that node. Moreover, orthogonal channels are assigned to
communication pairs to avoid interference.

The locations of the sources and sinks for flow i are
denoted by x

src(i)

and x
sink(i)

respectively, and the location
of robot j at time t is denoted as x

j

(t). All locations are in
the space Rn, where n 2 {2, 3}. Let the distance between a
source for flow i and a robot j be denoted as d(x

src(i)

, x
j

(t))
(similarly for the sink), which is a metric in Rn (for instance,
Euclidean distance). So if robot j is moving towards the
source for flow i (similarly for the sink), its position x

j

(t) is
updated so that it moves along the vector between its pre-
vious position and the source location to be at the following
distance:

d(x
src(i)

, x
j

(t+ 1)) = max{d(x
src(i)

, x
j

(t))� v, 0} (1)

We assume that the rate at which a source for flow
i can transmit to a robot j, denoted by R

src(i),j

(t) is al-
ways strictly positive, and decreases monotonically with
the distance between them, and similarly for the rate at
which a robot j can transmit to the sink for flow i, denoted
by R

j,sink(i)

(t). We assume that when the robot is at a

1. If the data arrival process at source i is stochastic, �i is the
expectation. Further, we assume the second moment of the stochastic
process is finite.

source'1�

�ink'1�

�our�e'2�

�ink'2�
robot'��

robot'��

robot'2�

robot'��

flow'1�

flow' �

Fig. 1. A network containing 2 pairs of source and sink nodes and 4
robots

TABLE 1
List of main notations in the problem formulation

Parameter Definition
K number of source and destination pairs
N number of mobile robots

src(i) source of the i

th flow
sink(i) sink of the i

th flow
xsrc(i) location of the source of the i

th flow
xsink(i) location of the sink of the i

th flow
xj(t) location of robot j at time t

Rsrc(i),j(t) transmission rate between a source for flow i and
robot j at time t

Rj,sink(i)(t) transmission rate between a sink for flow i and
robot j at time t

Qsrc(i)(t) queue size at the source for flow i at time t

Q

i
j(t) queue size at robot j for flow i at time t

�i packet arrival rate at the source of flow i

T epoch length
v robot’s velocity
A allocation matrix

location of a particular source or sink, (i.e., the distance
between them is 0), the corresponding throughput between
the mobile robot and that source or sink is maximized as
R

max

In the network, static nodes (sources and sinks) and
mobile robots have buffers with infinite size, and any un-
delivered packet can be stored in the corresponding buffer2.
The queue at the source for flow i is denoted as Q

src(i)

.
It is assumed that there is no queue at the sinks as they
directly consume all packets intended for them. Each robot
j maintains a separate queue for each flow i, labelled Qi

j

.
Figure 1 shows an illustration of this system with K = 2

flows and N = 4 robots.

2. In theory, no limit on the number of messages a robot can carry
is the ideal case, and this assumption enables us to have a clear
mathematical treatment of the capacity and delay performance study
in later sections. In practice, the maximum buffer occupancy will show
a concentration around some nominal value which depends upon how
close the arrival rate gets to the boundary of the capacity region; this
can be used to determine how to size the buffers to be a finite value
while ensuring a negligible packet drop probability.

4

Therefore, if a robot j is communicating with src(i) at
time t, the update equations for the corresponding queue of
the robot and the source queue will be as follows:

n
p

(t) = min{R
src(i),j

(t), Q
src(i)

(t)}
Qi

j

(t+ 1) = Qi

j

(t) + n
p

(t)

Q
src(i)

(t+ 1) = Q
src(i)

(t)� n
p

(t) + �
i

(2)

Similarly, if the robot j is communicating with sink(i)
at time t, the queue update equation for the robot’s corre-
sponding queue will be:

n
q

(t) = min{R
j,sink(i)

(t), Qi

j

(t)}
Qi

j

(t+ 1) = Qi

j

(t)� n
q

(t)
(3)

The above formulated system model will be used in all
following sections. And the goal of this work is to study and
design scheduling and allocation algorithms about how the
centralized scheduler allocates mobile robots to improve the
communication performance of the robotic message ferrying
network.

4 CAPACITY ANALYSIS

In this section, we aim at finding the capacity region of the
network of robotic message ferrying problem under the fol-
lowing assumptions: a) The message arrival rates at sources
are known; b) The epoch length T and robots’ velocity v can
be set arbitrarily large. In other words, we want to find the
largest rate region such that any arrival rate vector3 within
this region can be stably served (i.e., the average size of
each queue can be maintained to be bounded) under ideal
conditions. This capacity region serves as a performance
upper bound that will guide us to design robotic scheduling
algorithms and evaluate corresponding performances under
practical conditions in later sections.

Definition 1. (Capacity Region) The capacity region is the set of
all arrival rate vectors that are stably supportable by the network,
considering all possible scheduling policies.

Based on the previous system model of the robotic
message ferrying problem, we are able to find its capacity
region:

Theorem 1. The capacity region of the robotic message ferrying
problem is an open region ⇤ of arrival rate vectors as follows

⇤ =

(

�|0 �
i

< R
max

, 8 i,
K

X

i=1

�
i

<
R

max

N

2

)

(4)

Proof. See proof in Appendix A.

The general idea of the proof is to show that this arrival
rate region ⇤ can be served by a convex combination of
“basis” configurations in which robots are allocated to serve
distinct flows. Let ˜� be a finite set of vectors defined as:

˜

� =

(

�|�
i

=

a
i

R
max

2

, 8 i, a
i

2 {0, 1, 2},
K

X

i=1

a
i

 N

)

(5)
Each element of this set ˜

� is an arrival rate vector of one
basis configuration, and the corresponding integer vector a

3. An arrival rate vector is a vector of arrival rates of flows.

Fig. 2. Capacity region for a problem with 3 robots and 2 flows

corresponds to a basis allocation of robots to distinct sources
and sinks that can serve each flow at rate �

i

. Specifically,
a
i

refers to the number of robots allocated to serve flow i.
And each basis allocation corresponding to the elements of
˜

� can actually be expressed as two distinct but symmetric
allocations of robots to sources/sinks over two successive
epochs. For the ith flow, if a

i

= 0, there is no robot allocated
to either the source or sink in either of these two epochs,
yielding a service rate of �

i

= 0; if a
i

= 1, a particular
robot is assigned to be at the source at the first epoch and
at the sink at the second epoch, yielding a service rate of
�
i

=

R

max

2

; if a
i

= 2, two robots are assigned (call them R
1

and R
2

) such that R
1

is at the source at the first epoch and
at the sink at the second epoch while R

2

is at the sink at the
first epoch and at the source at the second epoch, yielding
a service rate of �

i

= R
max

. The constraints on a
i

ensure
that the total number of robots allocated does not exceed
the available number N .

Figure 2 shows an example of the capacity region when
the robotic message ferrying network has two source-sink
flows and three mobile robots, i.e., K = 2 and N = 3. The
labels such as (x, y) are given to the basis allocations on
the Pareto boundary to denote that they can be achieved by
allocating an integer number of robots x to flow 1 and y
to flow 2. Note in particular that the point (R

max

, R
max

) is
outside the region in this case because the only way to serve
that rate is to allocate two robots full time to each of the
two flows, and we have only 3 robots. The vertices on the
boundary of the region, which represent basis allocations,
are all in the set ˜�; the convex hull of ˜� completely describes
the region.

5 COARSE-GRAINED BACKPRESSURE CONTROL

From the previous discussion, we know that if the arrival
rate is known, and within the ideal capacity region of the
system, a service schedule for the robots can be designed in
such a way that the arrival rate is served in a stable manner.
The analysis thus far assumes that either the velocity of the
robot or the epoch duration can be chosen to be arbitrarily
large, which may not be true in practice. In the following,
motivated by practical considerations we consider the case

5

when T and v are finite and fixed, and study the corre-
sponding capacity region.

5.1 Capacity Region under finite velocity and epoch
duration
Assume the epoch length T and the velocity v are finite and
fixed. In particular, the restriction of T to be finite is useful
for two reasons: a) it fixes the overhead of scheduling and
b) it can be used to enforce an upper bound on delay (time
taken for a packet generated at the source to reach the sink).
As may be expected, these constraints reduce the capacity
region.

The fraction of time spent in transit, is bounded by d

max

vT

.
We assume that d

max

vT

< 1, which implies that a robot can
always reach its assigned node (source or sink) within an
epoch. Then the average transmission rate R

avg

during an
epoch in the worst case a robot can achieve can be derived
as follows. Consider the worst case where at the beginning
of an epoch a robot is allocated to collect data from a
source that is at the longest distance of d

max

away4. The
data transmission rate of a robot at time t is R(d

max

� vt),
and it will take the robot d

max

v

time to reach the assigned
node. When the robot reaches the node, it stays there and
maintains the maximum transmission rate R

max

for the rest
of an epoch.

Therefore, the total number of data that can be col-
lected by the robot during an epoch consists of two parts:
the first part is the maximum number of data that can
be collected during a robot’s movement, which equals
R

d

v

0

R(d
max

� vt)dt, and the second part is the maximum
number of data that can be collected when the robot stays at
its assigned node, which is R

max

(T � d

v

). Thus, the average
transmission rate in an epoch is:

R
avg

=

1

T

⇢

Z

d

v

0

R(d
max

� vt)dt+R
max

(T � d

v
)

�

(6)

This directly provides an inner-bound on the capacity
region for finite v and T expressed in terms of R

avg

, which
can still be achieved while scheduling robots in the same
way by a convex combination of configurations in which
robots are allocated to serve distinct flows as that in Section
IV:

⇤IB(v,T) =

(

�|0 �
i

< R
avg

, 8 i,
K

X

i=1

�
i

<
R

avg

N

2

)

(7)

5.2 Coarse-grained Backpressure-based Message Fer-
rying
In previous discussions, for any packets’ arrival rate in the
capacity region, as long as they are known a priori, they
can be stably served. We now consider a more practical
case when the arrival rate is not known to the centralized
scheduler, while the the epoch duration T and robots’
velocity v are still kept finite and fixed. Is it still possible
to schedule the movements and communications of robots

4. Though Ravg is analyzed in the context of robot collecting data
from a source, the same result can be derived if we focus on an epoch
where a robot delivers data to a sink.

in such a way that all queues remain stable? And what is
the corresponding rate region that can be achieved?

The answer to this question turns out to be yes, using
the notion of Backpressure scheduling first proposed by
Tassiulas and Ephremides [12]. We propose an algorithm
for scheduling message ferrying robots only based on queue
information for finite v and T parameters, which we refer
to as coarse-grained backpressure-based message ferrying
(CBMF) presented in Algorithm 1.

Algorithm 1 CBMF Algorithm
1: for n = 1, 2, . . . do

2: At the beginning of epoch n
3: for i = 1, . . . ,K do

4: for j = 1, . . . , N do

5: w
src(i),j

= Q
src(i)

(nT)�Qi

j

(nT)
6: w

sink(i),j

= Qi

j

(nT)
7: end for

8: end for

9: Find an allocation matrix A that solves optimization
problem (P1)

10: end for

The Optimization problem (P1) is formulated as follows:

maximize
A

X

i,j

w(A(i, j))

subject to
X

i

|A(i, j)| = 1, 8j (a)

X

j

I{A(i, j) = 1} 1, 8i (b)

X

j

I{A(i, j) = �1} 1, 8i (c)

(P1)

where w : X = {�1, 0, 1} ! R is a function defined as
follows:

w(x) =

8

>

<

>

:

w
src(i),j

if x = 1

w
sink(i),j

if x = �1
0 if x = 0

(8)

The constraint (a) in (P1) ensures that each robot is
allocated to exactly one source or sink. The constraint (b) in
(P1) (I{} represents the indicator function) ensures that no
source is allocated more than one robot, while the constraint
(c) in (P1) ensures that no sink is allocated more than one
robot.

The corresponding capacity and delay performance of
the CBMF algorithm is shown in Theorem 2.

Theorem 2. For any arrival rate that is within ⇤IB(v,T), the
CBMF algorithm ensures that all source and robot queues are
stable (always bounded by a finite value).

Proof. See proof in Appendix B.

The proof of this theorem follows from bounding the
drift of a quadratic Lyapunov function and deriving a
control policy that minimizes this bound, following closely
the approach pioneered by Tassiulas and Ephremides [12].
The technical complication in this setting compared to tra-
ditional backpressure as applied to static wireless networks
is that the average rate obtained over the course of an epoch

6

for each matching can be slightly different depending on the
starting position of the robot with respect to the node it is
being matched to. CBMF treats the rate for each matching
to be the same as R

avg

in its weight calculation, and as a
result it is not provably stable for all arrival rate vectors
in the ideal capacity region (which as discussed before is
in fact achievable using scheduling with prior knowledge
of the arrival rates); this theoretical guarantee can only
be provided for all arrival rates up to the inner-bound.
However, as v and T increase, the inner-bound approaches
the ideal capacity region.

Remark 1. In the proof in Appendix B, we also show that for a
fixed arrival rate, the end-to-end delay scales as O(T) so long as
T is large enough to ensure that the system remains stable.

Also, we would like to point out that the optimization
problem (P1) in Algorithm 1 is actually a Max-Weighted
Bipartite Matching problem, where the set of robots and the
set of static nodes (i.e., sources and sinks) form a bipartite
graph with edges connecting each robot and each static node
with edge weights as w

src(i),j

and w
sink(i),j

accordingly.
The optimal allocation can be computed in polynomial time
by using some well-known algorithms, such as Hungarian
algorithm [13]. This makes the CBMF algorithm works
efficiently in practice.

6 EPOCH ADAPTIVE CBMF
According to Remark 1 we know that when the number
of flows and the number of robots are fixed, the end-to-
end delay increases linearly as the epoch length T increases
when the network is stable under the CBMF algorithm.
Therefore, reducing epoch length can help reduce network
delay as long as the network is maintained stable. If the
arrival rates of flows in the network are given, theoretically,
we could apply eqns. (6) and (7) to find the best epoch
length T for the CBMF algorithm to make the network stable
while maintaining a small (if not the smallest) delay. But this
requires us to know all related network settings including
the number of flows and robots, locations of sources and
sinks, velocity of robots and communication model and
its corresponding parameters, not all of which could be
available a priori in practice. Moreover, the arrival rate of
flows is probably unknown and may change during run
time as well.

Therefore, we propose a heuristic approach to show how
one can adapt the epoch length T in the implementation of
the CBMF algorithm to make a network stable according
to current network condition while maintaining a small
delay without necessity of knowing all information, as in
Algorithm 2.

The general idea of Algorithm 2 is to initially set T as a
very large positive constant T

th

to make sure the network
is stable for any arrival rate. The centralized coordinator
allocates robots according to Algorithm 1, and reduces the
epoch duration T iteratively by a small step size � every
L observation duration until the network delay cannot
be decreased. Then the robots are allocated according to
Algorithm 1 for the fixed finalized T and a small network
delay can be maintained. The algorithm works well when
the arrival rate � remains constant. However, the system

Algorithm 2 Epoch Adaptive CBMF Algorithm
1: Initially set T = T

th

and D
old

= D
new

=1.
2: while D

old

� D
new

do

3: D
old

 D
new

4: T T � � . Skip this step in the initial loop
5: Run Algorithm 1 for a duration L . L >> T
6: Set D

new

as current network delay
7: end while

8: T T + �
9: Run Algorithm 1

becomes unstable when arrival rates increase. To solve
this problem, one can keep observing the network delay
while applying Algorithm 2. And when the network delay
increases, which indicates the arrival rate vector is beyond
the capacity region for the current epoch duration T , one
can reset the epoch duration back to the maximum value
T
th

and re-run Algorithm 2.

7 STRUCTURAL PROPERTIES AND DELAY PER-
FORMANCE OF CBMF ALGORITHM IN A HOMOGE-
NEOUS NETWORK

It has been shown in Theorem 2 that the CBMF algorithm
can provide the stability of a network for any arrival
rate vector within the capacity region ⇤IB(v,T). And the
essence is to find an allocation of robots that solves the opti-
mization problem (P1) at the beginning of each epoch, which
also indicates the total queue differential is maximized.
However, this does not provide us with any clue about the
structures or patterns of allocations. In this section, we study
a homogeneous network with deterministic data arrival
process and aim at finding structural properties of the CBMF
that can be utilized in practice to improve performance.

7.1 Structural Properties
We consider a homogeneous network in the sense that every
flow has the same arrival rate and the distance between a
source, and its corresponding sink is the same among all K
flows. Initially, we assume all queues are empty.

In the following discussion, in the case when the number
of robots assigned to collect data from sources is no greater
than the number of flows in a network, we assume that a col-
lecting robot can collect all data in the source and the source
queue become empty at the end of the epoch. This assump-
tion is reasonable and reflects the actual performance most
of the time if the arrival rate vector is within the capacity
inner bound. Also if there are data keeping accumulated at
the source, the network can no longer remain stable.

As observed, when applying the CBMF algorithm to find
robots’ allocation for each epoch, there may be multiple allo-
cations available, all of which are solutions to the optimiza-
tion problem (P1). Thus, we make two preferences when
choosing one allocation out of multiple possible allocations:
a) based on the intuition that better delay performance can
be achieved if robots can deliver data to corresponding
sinks as soon as possible, we let the centralized coordinator
prefer choosing the allocation which can assign as many
robots as possible to sinks to deliver data whenever there

7

is queue differential existing between a robot and a sink; b)
if no queue differential exists between any robot and sink,
the centralized coordinator prefers choosing the allocation
which can assign as many robots as possible to sources to
collect data.

Remark 2. These two preferences only deal with the case when
there are multiple possible allocations that solves the optimization
problem (P1). Therefore, the robotic allocation from CBMF algo-
rithm with these two preferences can still stabilize the network
for any arrival rate vector within the capacity inner bound
⇤IB(v,T).

With the above two preferences, we are able to study the
structural properties of the CBMF algorithm in the multi-
flow homogeneous network and find the robotic allocation
from the CBMF algorithm has a time sharing structure. In
the following, we present the structural property result in
two different cases depending on the number of flows and
the number of robots. First, for the case when the number
of robots is no more than the number of flows, we have the
following result:

Lemma 1. In a multi-flow homogeneous network, when the num-
ber of robots is no greater than the number of flows, i.e., N K ,
the CBMF Algrotihm with an allocation that exactly solves the
optimization problem (P1) at the start of each epoch is equivalent
to the Robot Allocation Strategy I shown in Algorithm 3.

Proof. See proof in Appendix C.

Algorithm 3 Robot Allocation Strategy I
1: At the beginning of the initial epoch, randomly pick N

sources and allocate a robot to each chosen source.
2: for n = 2, 3, . . . do

3: At the beginning of epoch n
4: if n is odd then

5: Allocate each robot to one of the N least recent
served sources to collect data

6: else

7: Allocate each robot to a sink corresponding to its
previously assigned source to deliver data

8: end if

9: end for

For the case when the number of robots is greater than
the number of flows, the corresponding result is shown as
follows:

Lemma 2. In a multi-flow homogeneous network, when the
number of robots is greater than the number of flows, i.e.,
K < N 2K , the CBMF algorithm with an allocation that
exactly solves the optimization problem (P1) at the start of each
epoch is equivalent to the Robot Allocation Strategy II shown in
Algorithm 4.

Proof. See proof in Appendix D.

Therefore, in a homogeneous network, the CBMF algo-
rithm has a simple time sharing structure (either Algorithm
3 or 4). The centralized coordinator does not need to collect
any queue information for making an allocation decision. It
only requires the centralized coordinator to find out the least

Algorithm 4 Robot Allocation Strategy II
1: Divide N robots into two groups. Group I contains K

robots and Group II contains N �K robots.
2: At the beginning of the initial epoch, randomly allocate

each robot in Group I to a source; And randomly choose
N � K sinks and allocate each robot in Group II to a
chosen sink

3: for n = 2, 3, . . . do

4: At the beginning of epoch n
5: if n is odd then

6: Allocate each robot in Group I to a source to
collect data

7: Allocate each robot in Group II to a sink corre-
sponding to its previously assigned source to deliver
data

8: else

9: Allocate each robot in Group I to a sink corre-
sponding to its previously assigned source to deliver
data

10: Allocate each robot in Group II to one of the N �
K least recent served sources to collect data

11: end if

12: end for

recent served flows, which can be done by keeping a record
in memory. In addition, every robot can have a finite buffer
since it serves a source and its corresponding sink in two
consecutive epochs. All of these can make our algorithms
easy and efficient to implement in practice

7.2 Delay Analysis
According to Remark 1, the end-to-end delay scales as O(T)
so long as T is large enough to make sure the system is
stable for a fixed arrival rate. However, this scaling law
perspective still cannot provide a clear idea of how delay
performs when the epoch length is finite. In a multi-flow
homogeneous network, the CBMF algorithm becomes as
simple as a time-sharing robot allocation strategy (either
Algorithm 3 or 4), which enables us to find its explicit delay
performance:

Theorem 3. In a homogeneous network with K flows and N
robots, the network delay under the CBMF algorithm can be
explicitly bounded as follows

• If the number of robots is no greater than the number of
flows, i.e. 0 < N K ,

¯D (c
1

+ 2)T (9)

• If the number of robots is greater than the number of flows
, i.e. K < N 2K ,

¯D
(

2T if � R

avg

2

n

R

avg

2�

+1+ (c
2

+2)(1�R

avg

2�

)

o

T if �>R

avg

2

(10)

where c
1

= bK
N

c and c
2

= b K

N�K

c, which are constants as K
and N are given.

Proof. Depending on the number of flows and the number
of robots in the network, the delay analysis falls into one of
the following two cases:

8

Case 1 when 0 < N K , the system follows Robot
Allocation Strategy I in Algorithm 3 by Lemma 1. Since the
arrival rate vector is within capacity region ⇤IB(v,T), it
will take a finite amount of time for the system to become
stable. When it is stable, the total queue size in the system
evolves exactly the same every two epochs. Assume the first
epoch in a two-epoch cycle is the one when robots move to
sources to collect data and the second of a two-epoch cycle is
the one when robots move to sinks to deliver data. Denote
the total queue size at the beginning of a two-epoch cycle
in the system as Q

cycle

, which remains the same every two
epochs.

At the beginning of a new two-epoch cycle when N
robots start to move to sources to collect data, the queue
size at a most recent served source is �T . This is because
a most recent served source is the one which is served in
the last two-epoch cycle. And in the first epoch of the last
two-epoch cycle, all data at the source can be collected by a
robot, and in the second epoch of the last two-epoch cycle, as
the robot delivers data to the corresponding sink, new data
keep arriving and accumulating at the source to �T . The
number of the most recent served sources is N , which is the
same as the number of robots. Similarly, the data at a second
most served source is 3�T , where the 2�T additional data
come from the fact that there is no robot serving it in the
most recent two-epoch cycle. And the number of the second
most recent served sources is also N . Thus, if we repeat this
analysis, we can get the queue size of each robot. Denote
c
1

= bK
N

c, which is a constant as K and N are fixed. The
number of sources with queue size �T, 3�T, ..., (2c

1

� 1)�T
respectively is N and the number of sources with a queue
size of (2c

1

+1)�T is K � c
1

N . Since all robots have empty
queues at the beginning of a two-epoch cycle, and sinks
always have empty queues, the total queue at the start of a
new two-epoch cycle in the system only consists of queues
at source, which is

Q
cycle

= N�T [1 + 3 + ...+ (2c
1

� 1)]

+ (K � c
1

N)(2c
1

+ 1)�T

= [(2c
1

+ 1)K � (c2
1

+ c
1

)N]�T

(11)

In the first epoch of a two-epoch cycle when robots
move to sources to collect data, since there is no data being
delivered to sinks and each source has an arrival rate of �,
the total queue backlog in the system increases as K�t. In
the second epoch when robots move to sinks to deliver data,
each source keeps having data arrive at rate �. But due to
the fact that data is being delivered to sinks from robots,
the total queue growth rate is no greater than K�t. Thus,
assume the time needed for the system to become stable is
n
1

epochs, then the total queue in the system at a time t
after the system is stable satisfies

Q(t) Q
cycle

+K�(t� n
1

T � 2T b t� n
1

T

2T
c) (12)

Thus the total accumulation of queues of all flows during
a time interval [0, (n

1

+ 2n
2

)T] that we are interested in

becomes
Z

(n1+2n2)T

0

Q(t)dt

=

Z

n1T

0

Q(t)dt+

Z

(n1+2n2)T

n1T

Q(t)dt

Z

n1T

0

Q(t)dt+ n
2

Z

2T

0

(Q
cycle

+K�t)dt

(13)

the last inequality comes from eqn. (12).
Therefore time average total queue in the system satisfies

¯Q = lim

n2!1

1

(n
1

+ 2n
2

)T

Z

(n1+2n2)T

0

Q(t)dt

 lim

n2!1

1

(n
1

+ 2n
2

)T

(

Z

n1T

0

Q(t)dt

+n
2

Z

2T

0

(Q
cycle

+K�t)dt

)

 1

2T

Z

2T

0

(Q
cycle

+K�t)dt

(14)
where the last inequality indicates that the time average
total queue is upper bounded by the time average queue
in a stable two-epoch cycle.

Taking eqn. (11) to eqn. (14) gives

¯Q [(2c
1

+ 2)K � (c2
1

+ c
1

)N]�T (15)

According to the Little’s Theorem, the corresponding
delay is ¯D =

¯

Q

K�

, thus we have

¯D [2c
1

+ 2� (c2
1

+ c
1

)

K

N

]T (16)

Further, since c
1

= bK
N

c < c
1

+ 1, we have

¯D (c
1

+ 2)T (17)

Case 2 when K < N 2K , the system follows Robot
Allocation Strategy II in Algorithm 4 by Lemma 2. Accord-
ing to Algorithm 4, robots are divided into two groups
containing K and N � K robots respectively. In addition,
the serving patterns of these two group are complementary
(or interchangeably). Specifically, if in an epoch when the
group of K robots collect data from sources, the group of
N �K robots deliver data to sinks; Or if in an epoch when
the group of K robots deliver data to sinks, the group of
N�K robots collect data from sources. Instead of randomly
allocate a robot in Group I to a source to collect data in odd
epochs in Algorithm 4, one feasible solution is to keep each
robot in Group I serving the same source in all odd epochs5.
Thus, depending on arrival rate, the corresponding delay of
the network can be analyzed in two different subcases as
follows

Subcase 1 when 0 � R

avg

2

: only using the group
of K robots can keep the network remain stable because
they can take all data from sources in the collecting epoch,

5. The centralized coordinator can arbitrarily fix the robotic allocation
of Group I in Algorithm 4 in such a way that keeps each robot in
Group I serving the same source in all odd epochs. There might be other
allocations of robots in Group I providing a better delay performance,
but the theoretical result derived in Theorem 3 still holds.

9

and all the data can be delivered to sinks in the following
delivering epoch. The other group of N �K robots can help
reduce delay in the network, but their different kinds of
assignments result in the same network delay. Similarly,
when the system is stable, the total queue size evolves
exactly the same every two epochs. Let the first epoch of the
two-epoch stable cycle be the one that the group of K robots
finish delivering data to sinks and move to sources to collect
data while the other group of N �K robots finish collecting
data from sources and move to sinks to deliver data; And
let the second epoch of the two-epoch stable cycle be the
one that the group of K robots finish collecting and move
to sinks to deliver data while the other group of N � K
robots finish delivering and move to sources to collect data.
Since every source has �T data arrive that have not been
delivered to its sink, the total queue length in the system at
the beginning of a two-epoch service cycle is Q

cycle

= K�T .
Since in a two-epoch cycle, there are always some robots

delivering data, the total queue growth rate is less than K�.
Similar to the argument in Case 1 that the time average total
queue in the system is upper bounded by the time average
queue in a stable two-epoch cycle, therefore, we have

¯Q 1

2T

Z

2T

0

(Q
cyce

+K�t)dt

 2K�T

(18)

And
¯D 2T (19)

Subcase 2 when � >
R

avg

2

: after the group of K robots
collecting data from sources, there can be leftovers in the
sources which can drive the group of N �K robots serve K
flows in the same manner as Algorithm 3.

Therefore, the network can be considered as formed by
two sub-networks. In one sub-network, there are K flows
with arrival rate R

avg

2

and each flow has a designated robot
serving it. In the second sub-network, there are K flows
with arrival rate � � R

avg

2

and N � K robots providing
service according to the Robot Allocation Strategy I in Al-
gorithm 3. And serving patterns of these two sub-networks
are complementary.

When the network is stable, the network evolves exactly
the same every two epochs. Let the first epoch of the two-
epoch stable cycle be the one that K robots move to sources
to collect data in the first sub-network while N �K robots
move to sinks to deliver data in the second sub-network,
and let the second epoch of the two-epoch stable cycle be
the one that K robots move to sinks to deliver data in the
first sub-network while N � K robots move to sources to
collect data in the second sub-network. Let m = N � K
and �

2

= � � R

avg

2

. The queue of the first sub-network at
the beginning of the two-epoch stable cycle is Q

cycle1 =

K
R

avg

2

T in the first sub-network.
For the second sub-network, following the similar anal-

ysis in Case 1, we can get the queue size of each robot at
the beginning of one epoch before a new two-epoch cycle.
Denote a constant as c

2

= bK
m

c, then he number of sources
with queue size �

2

T, 3�
2

T, ..., (2c
2

�1)�
2

T respectively is m
and the number of sources with a queue size of (2c

2

+1)�
2

T
is K � c

2

m at the beginning of the prior epoch. Taking the
new arrival data within the prior epoch into consideration,

the total queue in the second sub-network at the start of a
new two-epoch cycle is

Q
cycle2 = m�

2

T [1 + 3 + ...+ (2c
2

� 1)]

+ (K � c
2

m)(2c
2

+ 1)�
2

T +K�
2

T

= [(2c
2

+ 2)K � (c2
2

+ c
2

)m]�
2

T

(20)

Thus, the total queue in the system at the beginning of a
new two-epoch cycle is

Q
cycle

= Q
cycle1 +Q

cycle2

= K
R

avg

2

T + [(2c
2

+ 2)K � (c2
2

+ c
2

)m]�
2

T
(21)

In a two-epoch cycle, there are always some robots
delivering data, the total queue growth rate is less than
K�. Similar to the previous argument that the time average
total queue in the system is upper bounded by the time
average queue in a stable two-epoch cycle, then we have
¯Q 1

2T

R

2T

0

(Q
cycle

+K�t)dt, which yields

¯Q K
R

avg

2

T +[(2c
2

+2)K�c2
2

m�c
2

m]�
2

T +K�T (22)

And

¯D {Ravg

2�
+ [(2c

2

+ 2)� (c2
2

+ c
2

)

K

m

]

�
2

�
+ 1}T (23)

Similarly, since c
2

= bK
m

c < c
2

+ 1 and �
2

= � � R

avg

2

,
we further have

¯D
⇢

R
avg

2�
+ 1 + (c

2

+ 2)(1� R
avg

2�
)

�

T (24)

8 SIMULATIONS

We first present numerical simulation results for a network
containing twenty flows and thirty robots. The sources and
sinks of twenty flows are randomly located in a 200 ⇥ 200

2D plane, and all mobile robots initially start from the center
of the plane, i.e., the location (100, 100). Packets arrive at
sources following the same deterministic process. In the
simulation, we use a typical distance-rate function to rep-
resent the transmission rate. A reasonable first-order model
can be obtained by combining Shannon’s formula [31] for
the capacity of an AWGN formula [31] as a function of its
SNR. If the transmit power is kept constant, the SNR in turn
depends upon how the signal power varies with distance.
To account for near-field effects, we assume that this decay
happens as P

max

1+d

⌘

, where ⌘ is the path loss exponent, and
P
max

is the maximum received power. Thus the transmis-
sion rate as a function of distance is R(d) = log

⇣

1 +

C

1+d

⌘

⌘

,
where C is a constant that takes into account the transmitter
power as well as the noise variance at the receiver. We use
⌘ = 2, C = 1, v, T and � are varied as shown in the figure 3.

In the figure 3 (left) we see the average end-to-end delay
(it is obtained by measuring the average total queue size
in the simulations and dividing by the total arrival rate,
as per Little’s Theorem [30]) versus arrival rate as we fix
epoch duration T and vary velocity v, plotted wherever
CBMF results in stable queues; we find that we are able
to get converging, bounded delays (indicative of stability)

10

Input rate 6
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

D
el

ay

0

50

100

150

200

250

300

v=2*sqrt(2)
capacity inner bound=0.1371
v=8*sqrt(2)
capacity inner bound=0.5968
v=100*sqrt(2)
capacity inner bound=0.7377

Input rate 6
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

D
el

ay

0

50

100

150

200

250

300

350

400

T=25
capacity inner bound=0.1371
T=50
capacity inner bound=0.4434
T=200
capacity inner bound=0.6734

Fig. 3. Delay as we vary v for T = 100 (left) and delay as we vary T for v = 8
p
2 (right) for 20-Flows-30-Robots network

Time #104
0 1 2 3 4 5 6 7

D
el

ay

0

10

20

30

40

50

60

70

80

90

100

6=0.3 6=0.45

delay of Epoch Adaptive CBMF
delay of non-adaptive approach

Time #104
0 1 2 3 4 5 6 7

Ep
oc

h
le

ng
th

 T

25

30

35

40

45

50

55

60

65

70

75

80

6=0.3 6=0.45

T of Epoch Adaptive CBMF
T of non-adaptive approach

Fig. 4. Delay (left) and Epoch Duration (right) comparison of the Epoch Adaptive CBMF Algorithm with a non-adaptive scheme for 20-Flows-30-
Robots network

even beyond the inner-bound capacity line. Also marked on
the figure is the lower (inner) bound of capacity, for rates
below which CBMF is provably stable. We see that as the
velocity increases, so does the capacity, and at the same time
the delay decreases. Thus improvement in robot velocity
benefits both throughput and delay performance of CBMF,
as may be expected. Figure 3 (right), in which the velocity
v is kept constant across curves but the epoch duration T is
varied, is somewhat similar but with one striking difference,
however, as the epoch duration increases, so does the capac-
ity; but at the same time, the average delay also increases
(for the same arrival rates, so long as stability is maintained).
Thus, increasing the scheduling epoch duration improves
throughput but hurts delay performance.

Next, to show the performance of the Epoch Adaptive
CBMF in Algorithm 2, we conduct a simulation of a network
whose settings are the same as the previous 20-Flows-30-
Robots network. We use T

th

= 70, L = 5000 and p = 0.1.
Two different algorithms have been implemented to set the
epoch length T : one is to apply the Epoch Adaptive CBMF
in Algorithm 2, and the other is a non-adaptive scheme
where T is fixed as T

th

all the time. We present the delay
performance (in Figure 4 left) of these two approaches to-

gether with the corresponding epoch length at each time (in
Figure 4 right). Initially the arrival rate is set as � = 0.3. As
is shown in Figure 4, the Epoch Adaptive CBMF reduces the
epoch duration to improve network delay while keeping the
network stable. When there is an increase in the arrival rate
where � becomes 0.45, the Epoch Adaptive CBMF algorithm
can detect this change and adapt T accordingly to keep the
network stable while maintaining a small delay. Overall,
applying our heuristic algorithm to adjust the epoch length
according to current network condition can provide a better
delay performance.

Finally, we evaluate the performance of the CBMF algo-
rithm in a multi-flow homogeneous network. Particularly,
we are interested in how delay changes with respect to
the epoch duration T , which is tunable to meet differ-
ent network conditions when applying CBMF algorithm
in practice. We consider two different network settings:
a 20-Flows-10-Robots network and a 20-Flows-30-Robots
network. As can be seen in Figure 5, the delay performance
in simulation is bounded by our theoretical analysis. We also
present the results of how delay changes according to epoch
length T in Figure 6. As it is shown, the delay grows linearly
with the epoch length T in both simulation and theory. In

11

Input rate 6
0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22

D
el

ay

0

100

200

300

400

500

600

T=25 in sim
T=25 in thm
T=50 in sim
T=50 in thm
T=200 in sim
T=200 in thm

Input rate 6
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

D
el

ay

0

100

200

300

400

500

600

700

T=25 in sim
T=25 in thm
T=50 in sim
T=50 in thm
T=200 in sim
T=200 in thm

Fig. 5. Delay of as we vary � for homogeneous 20-Flows-10-Robots network (left) and 20-Flows-30-Robots network (right)

Epoch Length T
20 30 40 50 60 70 80 90 100 110

D
el

ay

50

100

150

200

250

300

350

delay in sim
delay upper bound

Epoch Length T
20 30 40 50 60 70 80 90 100 110

D
el

ay

20

40

60

80

100

120

140

160

180

200

220

delay in sim
delay upper bound

Fig. 6. Delay of as we vary T for a homogeneous 20-Flows-10-Robots network (left) and 20-Flows-30-Robots network (right)

addition, during the running of our simulation, we make
an observation of the allocation of robots at each epoch and
confirm that the CBMF algorithm indeed matches the robot
allocation strategy in Algorithm 3 or 4, which indicates the
CBMF has a simple time sharing structure.

9 CONCLUSIONS AND FUTURE WORK

This paper has addressed three fundamental questions in
robotic message ferrying for wireless networks: what is the
throughput capacity region of such systems? How can they
be scheduled to ensure stable operation, even without prior
knowledge of arrival rates? And what is the corresponding
delay performance, and is there a way to maintain stability
while having small delay in realistic network settings?

We have mathematically characterized the capacity re-
gion of such systems in both ideal and realistic settings. A
dynamic CBMF algorithm has been proposed to schedule
robots to guarantee the network stability even without
knowing the arrival rates. We have derived an inner bound
of the capacity region together with its corresponding delay
performance that the CBMF algorithm can achieve. The fact
that the delay scales linearly with the epoch duration has
guided us to design a heuristic approach to adapt epoch

duration during run time to improve the delay performance
while keeping network stable. It has also been shown that
in a multi-flow homogeneous network, the CBMF algorithm
with two additional preferences has a simple time sharing
structure, which is easy to implement in practice.

There are a number of open directions suggested by
the present work. The first is to improve the CBFM algo-
rithm to support the entire capacity region without delay
inefficiency, possibly by considering a finer-grained motion
control as a generalization of [29] to improve the utilization
of robots. To be specific, currently we assume each robot
can only be assigned to one node for the whole epoch.
Even if some robots may finish their tasks earlier than the
others, they can not be re-assigned to serve other nodes in
this epoch. A generalization of [29] can take care of this
scenario by using a much finer-grained motion control such
that the allocation decision is made at each time slot. This
algorithm is conceptually similar to the traditional Back-
pressure routing algorithm. However, the capacity analysis
in the traditional backpressure formulation is based on the
assumption that the link states / network topology is inde-
pendent of the nodes’ allocation, whereas in our problem,
the robots’ allocations can change the link states (i.e., the
communication rates). This coupling between allocation and

12

link rate makes the problem more complicated and does not
allow us to follow the standard analysis using backpressure
formulation. Therefore, the problem becomes non-trivial,
and in our prior work [29] on this topic, we were able to
solve the problem only for a single flow, single robot case.
In general, there is no certain answer.

Second, we would like to design more applicable algo-
rithms that take additional practical factors into consider-
ation. In addition to finite buffer size and packet loss that
have been discussed before, communication interference
and movement collision should also be taken care of in
practice. In this work, we assume that communication pairs
use orthogonal channels to avoid interference, the problem
becomes more interesting and practical when interference is
taken into consideration. In that case, allocations with inter-
fering communication pairs are not allowed. Careful path
planning for mobile robots is also required to avoid two
robots moving closes that causes interference. Movement
collision between robots might happen and affect the system
performance, especially in the case when there are a large
number of mobile robots in the network. Additional colli-
sion avoidance method needs to be taken into consideration
to avoid collision. All these additional considerations make
the problem non-trivial and the same current framework
will not be applicable.

Finally, though our current centralized framework is
relatively inexpensive since only queue state information
needs to be collected and the CBMF has a polynomial run-
time, it is still not robust and realistic in practice, thus
we are interested in developing decentralized scheduling
mechanisms that the robots can implement in a distributed
fashion. Also, we plan to find more structural properties of
the CBMF algorithm and its delay performance in general
cases.

ACKNOWLEDGMENT

This work was funded in part by the National Science
Foundation, under award number 1423624.

REFERENCES

[1] M. Grossglauser and D. Tse, “Mobility Increases the Capacity of
Ad Hoc Wireless Networks,” IEEE/ACM Trans. on Networking, vol
10, no 4, August 2002.

[2] W. Zhao and M.H. Ammar, “Message ferrying: proactive routing
in highly-partitioned wireless ad hoc networks,” The Ninth IEEE
Workshop on Future Trends of Distributed Computing Systems, May
2003.

[3] D. Jea, A. Somasundara, and M. Srivastava, “Multiple controlled
mobile elements (data mules) for data collection in sensor net-
works,” IEEE DCOSS, 2005.

[4] W. Zhao, M. Ammar, and E. Zegura, “Controlling the mobility of
multiple data transport ferries in a delay-tolerant network,” IEEE
INFOCOM, 2005.

[5] D. K. Goldenberg, J. Lin, S. A. Morse, B. E. Rosen, and R. Y. Yang,
“Towards mobility as a network control primitive,” ACM MobiHoc,
2004.

[6] R. Olfati-Saber, “Flocking for multi-agent dynamic systems: al-
gorithms and theory,” IEEE Trans. Autom. Control, vol.51, no.3,
pp.401420, 2006.

[7] J. Fax and R. Murray, “Information flow and cooperative control
of vehicle formations,” IEEE Trans. Autom. Control, vol.49, no.9,
pp.14651476, 2004.

[8] V.GaziandK.Passino, “Stability analysis of swarms,” IEEE Trans.
Autom. Control, vol.48, no.4, pp.692697, 2003.

[9] Y. Yan and Y. Mostofi, “Robotic router formation in realistic
communi-cation environments,” IEEE Trans. Robotics, vol.28, no.4,
pp.810827, 2012.

[10] M. Zavlanos, A. Ribeiro and G. Pappas,“Mobility and routing
control in networks of robots,” CDC, 2010.

[11] R. Williams, A. Gasparri and B. Krishnamachari, “Route Swarm:
Wireless Network Optimization through Mobility,” IROS, 2014.

[12] L. Tassiulas, A. Ephremides, “Stability properties of constrained
queueing systems and scheduling for maximum throughput in
multihop radio networks,” IEEE Transactions on Automatic Control,
Vol. 37, No. 12, pp. 1936-1949, 1992.

[13] H. W. Kuhn and B. Yaw, “The Hungarian method for the assign-
ment problem,” Naval Res. Logist. Quart, pp. 83–97, 1955

[14] L. Georgiadis, M. Neely, and L. Tassiulas, “Resource allocation and
cross layer control in wireless networks,” Foundations and Trends in
Networking, vol. 1, 2006.

[15] M. Neely and R. Urgaonkar, “Opportunism, backpressure, and
stochastic optimization with the wireless broadcast advantage,”
IEEE SSC, 2008.

[16] M. Neely, “Order optimal delay for opportunistic scheduling in
multi-user wireless uplinks and downlinks,” IEEE/ACM TON, 2008.

[17] M. Neely, “Intelligent packet dropping for optimal energy-delay
tradeoffs in wireless downlinks,” IEEE TAC, 2009.

[18] A. Dvir and A. V. Vasilakos, “Backpressure-based routing protocol
for DTNs,” ACM SIGCOMM, 2010.

[19] M. Neely, E. Modiano and C. Li, “Fairness and optimal stochastic
control for heterogeneous networks,” IEEE Transactions on Network-
ing, volv. 16, No. 2, pp. 396-409, 2008.

[20] M. J. Neely, “Energy-Aware Wireless Scheduling with Near Opti-
mal Backlog and Convergence Time Tradeoffs,”, IEEE INFOCOM,
2015.

[21] B. Ji, C. Joo, and N. Shroff, “Delay-based back-pressure scheduling
in multihop wireless networks,” IEEE/ACM Transactions on Network-
ing, vol. 21, no. 5, 2013.

[22] E. Athanasopoulou, L. Bui, T. Ji, R. Srikant, and A. Stolyar, “Back-
pressure-based packet-by-packet adaptive routing in communica-
tion networks,” IEEE/ACM Transactions on Networking, 2013.

[23] L. Huang, S. Moeller, M. Neely, and B. Krishnamachari,
“LIFO- backpressure achieves near-optimal utility-delay tradeoff,”
IEEE/ACM Transactions on Networking, vol. 21, no. 3, pp. 831844,
June 2013.

[24] S. Supittayapornpong and M. J. Neely, “Achieving Utility-Delay-
Reliability Tradeoff in Stochastic Network Optimization with Finite
Buffers,” IEEE INFOCOM, 2015

[25] A. Warrier, S. Janakiraman, S. Ha, and I. Rhee, “Diffq: Practical
differential backlog congestion control for wireless networks,” IEEE
INFOCOM, 2009.

[26] A. Sridharan, S. Moeller, and B. Krishnamachari, “Implementing
backpressure-based rate control in wireless networks,” ITA Work-
shop, 2009.

[27] S. Moeller, A. Sridharan, B. Krishnamachari, and O. Gnawali,
“Routing without routes: the backpressure collection protocol,”
ACM/IEEE IPSN, 2010.

[28] S. Wang, A. Gasparri, B. Krishnamachari, “Robotic Message Fer-
rying for Wireless Networks using Coarse-Grained Backpressure
Control,” short paper in IEEE Globecom 2013 Workshop - Wireless
Networking and Control for Unmanned Autonomous Vehicles.

[29] A. Gasparri and B. Krishnamachari, “Throughput-optimal robotic
message ferrying for wireless networks using backpressure con-
trol,” in IEEE MASS, 2014.

[30] A. Leon-Garcia, Probability and Random Processes for Electrical Engi-
neering, Addison-Wesley, 1993.

[31] A. Goldsmith, Wireless Communications, Cambridge Univ. Press,
2005.

13

Shangxing Wang received the B.S. degree
in electrical engineering at Xidian University,
Xian, Shaanxi, China, in 2010. She is currently
pursuing the Ph.D. degree in the Autonomous
Networks Research Group at the University of
Southern California, Los Angeles, CA, USA.

Her research interest is in the area of robotic
wireless networks and stochastic network opti-
mization.

Andrea Gasparri Andrea Gasparri (M09) re-
ceived the cum laude degree in computer sci-
ence and the Ph.D. degree in computer sci-
ence and automation, both from the University
of Roma Tre, Rome, Italy, in 2004 and 2008,
respectively.

He has been a Visiting Researcher at sev-
eral institutions, including the Universite Libre de
Bruxelles, Brussel, Belgium, City College of New
York, New York, NY, USA, and the University of
Southern California, Los Angeles, CA, USA. He

is currently an Assistant Professor with the Department of Engineering,
University of Roma Tre. His current research interests include mobile
robotics, sensor networks, and networked multi-agent systems.

Dr. Gasparri was the recipient of the Italian grant FIRB Futuro in
Ricerca 2008 for the project Networked Collaborative Team of Au-
tonomous Robots funded by the Italian Ministry of Research and Ed-
ucation (MIUR).

Bhaskar Krishnamachari Bhaskar Krishna-
machari received his B.E. in Electrical Engineer-
ing at The Cooper Union, New York, in 1998,
and his M.S. and Ph.D. degrees from Cornell
University in 1999 and 2002 respectively.

He is a Professor in the Department of Elec-
trical Engineering at the University of Southern
California’s Viterbi School of Engineering. His
primary research interest is in the design and
analysis of algorithms and protocols for next-
generation wireless networks.

1

Supplemental Material: Robotic Message

Ferrying for Wireless Networks using

Coarse-Grained Backpressure Control

Shangxing Wang, Andrea Gasparri, Member, IEEE, and Bhaskar Krishnamachari, Member, IEEE

F

APPENDIX A
PROOF OF THEOREM 1
To prove this theorem, we need to show that the arrival rate
region ⇤ can be served by a convex combination of basis
configurations in which robots are allocated to serve distinct
flows.

Let us refer to the convex hull of �̃ as H(�̃) or, for
readability, simply H. Then we have the follwing lemma:

Lemma 1. H � ⇤

Proof. First, note that the convex hull of �̃ can be written as
follows:

H =

(

�|�
i

=
a
i

R
max

2
, a

i

2 [0, 2] 8 i,
K

X

i=1

a
i

 N

)

(1)

In other words, the convex hull of the set �̃ is obtained
by allowing a

i

to vary continuously. Now using the rela-
tionship a

i

= 2�
i

R

max

, we can re-express H as follows:

H =

(

�| 2�
i

R
max

2 [0, 2] 8 i,
K

X

i=1

2�
i

R
max

 N

)

=

(

�|0 �
i

 R
max

8 i,
K

X

i=1

�
i

 R
max

N

2

)

� ⇤

Each basis allocation corresponding to the elements of
�̃ can actually be expressed as two distinct but symmetric
allocations of robots to sources/sinks over two successive
epochs. For the ith flow, if a

i

= 0, there is no robot allocated
to either the source or sink in either of these two epochs; if
a
i

= 1, a particular robot is assigned to be at the source at
the first epoch and at the sink at the second epoch; if a

i

= 2,
two robots are assigned (call them R1 and R2) such that
R1 is at the source at the first epoch and at the sink at the

• S. Wang and B. Krishnamachari are with the Ming Hsieh Department of
Electrical Engineering, University of Southern California, Los Angeles,
CA, 90007.
E-mail: shangxiw@usc.edu and bkrishna@usc.edu

• A. Gasparri is with the Department of Engineering, Roma Tre University,
Rome, Italy.
E-mail: gasparri@dia.uniroma3.it

second epoch while R2 is at the sink at the first epoch and
at the source at the second epoch.

The set H describes all possible robot service rates that
can be obtained by a convex combination of these basis
allocations. Consider a rate vector � 2 H. Since it lies in
the convex hull of the set �̃ it can be described in terms
of a vector of convex coefficients ↵ each of whose elements
corresponds to a basis allocation of robots. We can therefore1

identify n
i

such that n
i

/
P

i

n
i

= ↵
i

. The given rate vector

� can then be scheduled by allocating n
i

epochs each for
the two parts of the ith basis allocation. And after a total
of

P

i

2n
i

epochs, the whole schedule can be repeated. This

schedule will provide the desired service rate vector �.
Thus far the schedules have been derived under the

assumption of instantaneous robot movements. Now we
consider the effect of transit time. It is possible to choose
T or v to be sufficiently large to bound the fraction of
time spent in transit by ✏, i.e. d

max

vT

< ✏, where d
max

is the
maximum distance between static nodes. Thus even while
taking into account time wasted in transit, we can scale
either time period of the epochs T or the velocity v so as
to provide a service rate vector �0 that is arbitrarily close to
any ideal service rate � in the sense that �

i

� �0
i

< ✏ 8 i.
Together, these imply that ⇤ is the achievable capacity

region of the network.

APPENDIX B
PROOF OF THEOREM 2
The main idea to prove this theorem is to show the time
average total queue in the system can be upper bounded.

From an average point of view, alternatively, we can
consider this mobile network as a static network where
robots are static and have a constant transmission rate as
R

avg

. As R
avg

is the worst-case average transmission rate,
some robots may have higher average transmission rates
if their travelling distances are smaller than d

max

in some
epochs. In that case, we can assume those robots pause
communicating with their assigned nodes for some time
during the epochs, and thus their average transmission rates

1. Here, for ease of exposition, we are assuming that ↵i is rational,
otherwise it can be approximated by an arbitrarily close rational num-
ber which will not affect the overall result.

2

can still be the same as R
avg

. This assumption also indicates
why the capacity region ⇤IB(v,T) we are going to prove
in the following is only an inner bound since some robots
are under utilization under the assumption. And the CBMF
algorithm can actually achieve a better capacity region in
practice.

Let b
ij

(t) 2 {0, 1} represent if a robot j is allocated
to source src(i). b

ij

(t) = 1 indicates robot j is allocated
to src(i) and b

ij

(t) = 0 indicates robot j is not allocated
to src(i). Similarly, c

ij

(t) 2 {0, 1} represents whether a
robot j is allocated to sink sink(i). Since at any time t
a robot can be allocated to exactly one source or sink,
we have

P

K

i=1 bij(t) + c
ij

(t) = 1. The transmission rates
from a src(i) to robot j and from robot j to sink(i) are
R

src(i),j(t) = b
ij

(t)R
avg

and R
j,sink(i)(t) = c

ij

(t)R
avg

respectively.
At the beginning of epoch n + 1 (before making a new

allocation), the queue backlog at source i, 8i 2 {1, ...,K}, is
updated as follows

Q
src(i)((n+ 1)T)=max{Q

src(i)(nT) + �
i

(T � 1)

�
N

X

j=1

b
ij

(nT)R
avg

T, 0}+ �
i

(2)

The queue backlog at robot j for flow i at the beginning
of epoch (n+1)T , 8i 2 1, ...,K and j 2 1, ..., N , is given by

Qi

j

((n+ 1)T) =max
�

Qi

j

(nT)� c
ij

(nT)R
avg

T, 0

+min
�

Q
src(i)(nT) + �

i

(T � 1),

b
ij

(nT)R
avg

T}
(3)

Define the queue backlog vector of this system at the
beginning of epoch n as

⇥(nT) =
�

Q
src(1)(nT), ..., Qsrc(K)(nT), Q

1
1(nT), ...,

QK

1 (nT), ..., Q1
N

(nT), ..., QK

N

(nT)
⌘ (4)

And the Lyapunov function as

L(⇥(nT)) =
1

2

2

4

K

X

i=1

Q
src(i)(nT)

2 +
K

X

i=1

N

X

j=1

Qi

j

(nT)2

3

5 (5)

Then we have,

L(⇥((n+ 1)T))� L(⇥(nT))

K

X

i=1

"

N

P

j=1
b
ij

(nT)R
avg

T � �
i

(T � 1)

#2

+ �2
i

2

+
K

X

i=1

N

X

j=1

(c
ij

(nT)R
avg

T)2 + (b
ij

(nT)R
avg

T)2

2

+
K

X

i=1

Q
src(i)(nT)

2

4�
i

�
N

X

j=1

b
ij

(nT)R
avg

)

3

5T

+
K

X

i=1

N

X

j=1

Qi

j

(nT) (b
ij

(nT)� c
ij

(nT))R
avg

T

(6)

where the inequality comes from equations (2) and (3), and

(max {Q� b, 0}+ a)2 Q2 + a2 + b2 + 2Q(a� b). (7)

(max {Q1 � c, 0}+min {Q2, b})2 max {Q1 � c, 0}+ b
(8)

Define the conditional Lyapunov drift as

4 (⇥(nT)) = E {L(⇥((n+ 1)T))� L(⇥(nT))|⇥(nT)}
(9)

Based on the assumption that at any time at most
one robot can be allocated to serve a source i (8i 2
{1, ...,K}), we have among all binary variables b

ij

(8j 2
{1, ..., N}), at most one variable can be 1 and all the others

are 0s. Thus,
h

(
P

N

j=1 bij(nT)Ravg

T)
i2 (R

avg

T)2 and
P

N

j=1(bij(nT)Ravg

T)2 (R
avg

T)2. Similarly, since at any
time at most one robot can be allocated to serve a sink i (8i2
{1, ...,K}), among all binary variables c

ij

(8j2{1, ..., N}), at
most one variable can be 1 and all the others are 0s. And we
have

P

N

j=1(cij(nT)Ravg

T)2 (R
avg

T)2. Since N , T and
R

avg

 R
max

are all finite, the first and second moments of
the data arrival process are finite, then we can define a finite
constant B as

B =
K

X

i=1

(R
max

T)2 + �2
i

2

+
K

X

i=1

(R
max

T)2 + (R
max

T)2

2

(10)

which provides an upper bound for the first two terms on
the right hand side (RHS) of inequality (6).

Thus we have,

4 (⇥(nT))

 B +
K

X

i=1

Q
src(i)(nT)�i

T

�
K

X

i=1

N

X

j=1

E
�⇥

(Q
src(i)(nT)�Qi

j

(nT))b
ij

(nT)

+ Qi

j

(nT)c
ij

(nT)
⇤

R
avg

T |⇥(nT)

(11)

Applying the CBMF algorithm to allocate robots, the
last term on the RHS of (11) can be maximized, thus the
conditional drift can be minimized. Let b⇤

ij

(t) and c⇤
ij

(t)
represent any other robot allocation, then equation (11) can
be re-written as
4 (⇥(nT))

 B�
K

X

i=1

Q
src(i)(nT)

0

@E

8

<

:

N

X

j=1

b⇤
ij

(nT)R
avg

|⇥(nT)

9

=

;

��
i

1

AT

�
K

X

i=1

N

X

j=1

Qi

j

(nT)E
��

c⇤
ij

(nT)� b⇤
ij

(nT)
�

R
avg

T |⇥(nT)

(12)
In order to upper bound (12), let us first consider

the following problem: given an arrival rate vector � =
(�1, ...,�K

) 2 ⇤IB(v,T), we want to design an S-only
(depends only on the channel states) algorithm such that

find ✏ > 0

subject to �
i

+ ✏ E

8

<

:

N

X

j=1

b⇤
ij

(t)R
avg

9

=

;

, 8i (a)

E
�

b⇤
ij

(t)R
avg

+ ✏ E
�

c⇤
ij

(t)R
avg

, 8i, j (b)
(P2)

3

Similar to the previous robots’ allocation policy when
prior knowledge about arrival rate vector is given in Sec-
tion III, define the set of all possible robot service rates

as H0 =

⇢

�|�
i

= a

i

R

avg

2 , a
i

2 [0, 2] 8 i,
K

P

i=1
a
i

 N

�

. Then

an S-only algorithm to achieve any given arrival rate vector
strictly interior to H0 can be designed as follows:

Since � = (�1, ...,�K

) 2 H0/@H0, we can find a vector
✏ = (✏1, ..., ✏K) such that �0 = (�1 + ✏1, ...,�K

+ ✏
K

) 2
@H0. Let ✏

max

(�) = min{✏1, ..., ✏K}, and since � is strictly
interior in H0, we have ✏

max

(�) > 0.
Let �00 = (�1 + ✏

max

(�), ...,�
K

+ ✏
max

(�)) 2 H0, and
it can be represented as a convex combination of basis
allocations in H0. To be specific, in a network containing K
flows and N robots, there are M (depending on K and N)
basis allocations in total. Let (�

l1, ...,�lK

), 8l 2 {1, ...,M}
denote the capacity the l

th

allocation can provide. Let
↵ = (↵1, ...,↵M

) be the allocation vector of the convex co-
efficients such that 8l 2 1, . . . ,M , ↵

i

� 0 and
P

M

l=1 ↵l

= 1.
Then we have

↵1(�11, ...,�1K) + ...+ ↵
M

(�
M1, ...,�MK

)

= (�1 + ✏
max

(�), ...,�
K

+ ✏
max

(�))
(13)

After finding integers n
l

such n
l

/
M

P

j=1
n
j

= ↵
l

,

8l 2 {1, ...,M}, the arrival rate vector �00 can be served by
first allocating n

l

epochs for the l
th

basis allocation, and
allocating the next n

l

epochs for the same l
th

basis allocation
but exchanging the robots locations, 8l 2 {1, ...,M}. And

after every 2
M

P

l=1
n
l

epochs, repeat the whole process.

The above algorithm can guarantee to find a ✏
max

(�) >
0 in (P2) with constraint (a) satisfied. But constraint (b)
in P(2) cannot be met since the above algorithm makes
E
n

b⇤
ij

(t)R
avg

o

= E
n

c⇤
ij

(t)R
avg

o

, 8i, j. To satisfy con-
straint (b) in (P2), we can change the above algorithm by
adding a few more epochs to each 2

P

l

n
l

epochs period,

during which we only have robots at sinks to help deliver
data. In this way we can find a ✏0(�) > 0 that solves (P2),
and this allows to express equation (12) as

4(⇥(nT)) B�✏0(�)T

2

4

K

X

i=1

Q
src(i)(nT)+

K

X

i=1

N

X

j=1

Qi

j

(nT)

3

5

(14)
Taking iterated expectations, summing the telescoping

series, and rearranging terms yields:

n�1
X

k=0

2

4

K

X

i=1

E
�

Q
src(i)(kT)

+
K

X

i=1

N

X

j=1

E
�

Qi

j

(kT)

3

5

 nB

✏0(�)T
+

E{L(⇥(0))}
✏0(�)T

(15)

Consider a time slot t in some epoch interval [kT, (k +
1)T], for every flow i with arrival rate �

i

, the total queue
length of its packets satisfies

Q
src(i)(t)+

N

X

j=1

Qi

j

(t) Q
src(i)(kT)+

N

X

j=1

Qi

j

(kT)+�
i

(t�kT)

(16)

Thus, the total accumulation of queues of all flows
during time interval [0, nT � 1] satisfies

nT�1
X

⌧=0

2

4

K

X

i=1

E
�

Q
src(i)(⌧)

+
K

X

i=1

N

X

j=1

E
�

Qi

j

(⌧)

3

5

 nB(T � 1)

✏0(�)T
+

E{L(⇥(0))(T � 1)}
✏0(�)T

+
K

X

i=1

T (T � 1)n�
i

2
(17)

where the inequality comes from eqn. (15).
Therefore time average total queue in the system satisfies

Q̄ = lim
n!1

1

nT

nT�1
X

⌧=0

2

4

K

X

i=1

E
�

Q
src(i)(⌧)

+
K

X

i=1

N

X

j=1

E
�

Qi

j

(⌧)

3

5

 B(T � 1)

✏0(�)T 2
+

K

X

i=1

(T � 1)�
i

2
(18)

which indicates the time average total queue is bounded
and the system is strongly stable as B, T , � and ✏0(�) are
positive constants and K and N are fixed.

Further according to eqn. (10), B = O(T 2). Then for any
given � 2 ⇤IB(v,T), the time average total queue satisfies
Q̄ = O(T) so long as the system is stable. As per Little’s
Theorem [29]), the end-to-end delay is obtained by dividing
the average total queue size by the total arrival rate, which
gives D̄ = Q̄P

K

i=1 �

i

= O(T).

APPENDIX C
PROOF OF LEMMA 1
What we are interested in showing in the following is that
under the homogeneous condition, the Robot Allocation
Strategy I indeed follows the CBMF algorithm that solves
the optimization problem (P1) at the start of each epoch.

In the initial epoch, since all queues are empty, the cen-
tralized scheduler prefers assigning each robot to a source
to collect data and all data from each served source can
be collected at the end of this epoch. Thus at the end of
the initial epoch, each robot contains �T data in its queue
corresponding to its assigned source. At the end of the first
epoch, there are N sources served whose queues are empty
and each of the K � N unserved sources has a queue size
of �T . Thus, at the beginning of the second epoch, though
the optimization problem (P1) may have multiple solutions
that all give the maximum total queue differential N�T ,
based on our assumptions, the scheduler prefers choosing
the solution that assign all robots to sinks with the purpose
to reduce delay.

In the second epoch, robots can deliver all their data
to sinks and their queue become empty at the end. Thus,
the queue differential between any robot and any sink is
0. Additionally, each source has �T new data arrive during
this epoch. Thus, at the beginning of the third epoch, accord-
ing to the CBMF algorithm, all robots need to be allocated
to sources and the corresponding allocation A3

2 solves the
optimization problem (P1) with maximized total queue dif-
ferential as

P

i,j

w(A3(i, j)). During the third epoch, robots
can collect all data from their assigned sources. At the

2. Ai represents the allocation in epoch i.

4

beginning of the forth epoch, if one assign all robots to
sinks associated with the previously served sources, the
total queue differential is

P

i,j

w(A3(i, j)) + N�T , which
is the maximum total queue differential. This is because at
the beginning of the third epoch, the total queue differential
P

i,j

w(A0
3(i, j)) provided by any other allocation A0

3 is
no greater than

P

i,j

w(A3(i, j)). During the third epoch,
each source has an amount of �T new data arrive, and
at most N sources can have their new data arrived in
the third epoch completely being collected by their serving
robots. Therefore, at the beginning of the fourth epoch, any
allocation cannot provide a total queue differential greater
than

P

i,j

w(A3(i, j)) + N�T . Thus, in the fourth epoch,
based on the CBMF, the allocation that assigns robots to
sinks associated with the sources they serve in the third
epoch is the solution to the optimization problem (P1).

If we apply the above analysis for all epochs, it can
be proved that robots work as one single serving group
and serve sources and sinks in alternative cycles under
the CBMF algorithm. In addition, since all flows are ho-
mogeneous, each flow has an equivalent amount of time
being served. This further indicates that in every odd epoch,
robots need to be allocated to least recent served sources to
collect data, and in the following even epoch, robots need
to be assigned to the corresponding sinks to deliver data.
Thus, the robotic allocation turns out to follow the Robot
Allocation Strategy I shown in Algorithm 3.

APPENDIX D
PROOF OF LEMMA 2
Similar to the proof of Lemma 1, what we are going to show
is that the Robot Allocation Strategy II stated in Lemma 2
follows the CBMF algorithm that solves the optimization
problem (P1) at the start of each epoch.

In the first epoch, since all queues in the system are
empty, the allocation is to allocate K robots to move to
sources to collect data and the other N �K robots to move
sinks to deliver data (though the robots do not have any data
during this initial epoch). The arrival rate of each source is �.
At the end of the first epoch, each of the K collecting robot
contains �T data in its queue associated with its assigned
source, and all other nodes or robots have queue size 0.
Thus, at the beginning of the second epoch, the allocation
that solves the optimization problem (P1) is to allocate each
previous collecting robot to move to the corresponding sink
to deliver data and the other N � K previous delivering
robots to sources to collect data.

In the second epoch, each of the N � K robots can
collect all data from its assigned source and each of the
K delivering robots can deliver all its collected data to
its sinks. Thus, at the end of the second epoch, each of
the N � K robots has a queue size �T associated with its
assigned source, and the queue of each of the K delivering
robot becomes empty. Among K sources, there are N � K
sources having been served whose queues are empty and
each of the 2K � N unserved sources has a queue size of
�T . Thus, at the beginning of the third epoch, based on
the CBMF, the allocation A3 that solves the optimization
problem (P1) with sinks preferred is to allocate the N � K
robots to corresponding sinks to deliver data and the K

robots to sources to collect data. Denote the corresponding
total queue differential as

P

i,j

w(A3(i, j)).
In the third epoch, the N � K robots move to corre-

sponding sinks to deliver data and the K robots move to
sources to collect data. At the end, the N �K robots finish
delivery and their queue become empty. The total queue
differential between robots and sinks associated with their
served sources is

P

i,j

w(A3(i, j)) +N�T (or a little bit less
if there are leftovers exist in the sources, but this will not
affect the allocation except for driving the N �K robots to
serve sources with more leftovers), which is the maximum
total queue differential. This is because at the beginning of
the third epoch, the total queue differential

P

i,j

w(A0
3(i, j))

provided by any other allocation A0
3 is no greater than

P

i,j

w(A3(i, j)). And during the third epoch, each source
an amount of �T new data arrive, and at most N sources can
have their new data arrived in the third epoch completely
being collected by their serving robots. Thus, at the begin-
ning of the fourth epoch, any allocation cannot provide a
total queue differential greater than

P

i,j

w(A3(i, j))+N�T .
Thus, in the fourth epoch, based on the CBMF, the allocation
that solves the optimization problem (P1) is to assign robots
to sinks associated with the sources they serve in the third
epoch.

As we apply the above analysis for all epochs, it can
be proved that robots are divided into two groups whose
size are K and N � K separately. And the two groups in-
terchangeably serve sources and sinks in alternative cycles.
Similarly, since all flows are homogeneous, each flow has an
equivalent amount of time being served. Thus, the robotic
allocation follows the Robot Allocation Strategy II shown in
Algorithm 4.

	Introduction
	related work
	Problem Formulation
	Capacity Analysis
	Coarse-Grained Backpressure Control
	Capacity Region under finite velocity and epoch duration
	Coarse-grained Backpressure-based Message Ferrying

	Epoch Adaptive CBMF
	Structural Properties and Delay Performance of CBMF Algorithm in a Homogeneous Network
	Structural Properties
	Delay Analysis

	Simulations
	Conclusions and future work
	References
	Biographies
	Shangxing Wang
	Andrea Gasparri
	Bhaskar Krishnamachari

