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Distributed Control of Multi–Robot Systems with Global

Connectivity Maintenance

Lorenzo Sabattini, Cristian Secchi, Nikhil Chopra and Andrea

Gasparri

Abstract—This work introduces a control algorithm that, exploiting a
completely decentralized estimation strategy for the algebraic connectiv-
ity of the graph, ensures the connectivity maintenance property for multi–

robot systems, in the presence of a generic (bounded) additional control
term. This result is obtained driving the robots along the negative gradient
of an appropriately defined function of the algebraic connectivity. The
proposed strategy is then enhanced, with the introduction of the concept

of critical robots, that is robots for which the loss of a single communi-
cation link might cause the disconnection of the communication graph.
Limiting the control action to critical robots will be shown to reduce

the control effort introduced by the proposed connectivity maintenance
control law and to mitigate its effect on the additional (desired) control
term.

Index Terms—Distributed Robot Systems, Networked Robots, Global

Connectivity Maintenance.

I. INTRODUCTION

In this paper a decentralized control strategy is proposed for

the maintenance of the global connectivity in multi–robot systems.

The connectivity maintenance problem turns out to be a relevant

problem for achieving a wide range of collaborative tasks, for instance

collaborative exploration, coverage or formation control [1]–[3]. As

a matter of fact, disconnection among the members of a multi–robot

system might appear in several cases, such as for the presence of

collision avoidance control actions. Nevertheless, the majority of

techniques proposed for achieving these collaborative tasks do not

take the connectivity maintenance into account.

In the literature, several approaches have been proposed to preserve

the connectivity of a multi–robot system [4]–[10]. Roughly speaking,

these approaches can be divided into two categories: approaches to

maintain the local connectivity, and approaches to maintain the global

connectivity.

The local connectivity maintenance problem aims at preserving

over time the original set of links that define the connectivity

graph. Clearly, the preservation of each link of the communication

graph is a very restrictive requirement which significantly limits

the capability of the multi–robot system itself. As a matter of fact,

in order to ensure the information exchange among all the robots,

it is necessary to guarantee only the global connectivity of the

communication graph. Generally speaking, it is acceptable that a

some links could be removed while others could be added, as long

as the overall connectivity of the graph is preserved. Thus, imposing

the global connectivity maintenance ensures that none of the robots

loses connectivity from the rest of the group, without unnecessarily

constraining the motion of the multi–robot system.

Global connectivity maintenance may be addressed implementing a

gradient based control strategy to increase the algebraic connectivity

[10]. On these lines, a bounded error estimation procedure was

proposed in [11] to estimate the second–smallest eigenvalue of the

Laplacian matrix, as well as its gradient. These estimates were
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exploited to formally guarantee connectivity maintenance. Alternative

strategies for the estimation of the algebraic connectivity of an

undirected graph and its related eigenvector can be found in [12]–

[14].

In this work the connectivity maintenance problem for distributed

control applications is addressed. Specifically, the contribution of the

paper is the following:

1) The scope of the control strategy proposed in [11] is extended

by taking into account the presence of an additional (bounded)

control law.

2) The proposed control law is then enhanced by limiting its effect

to appropriately defined critical robots, namely robot for which

a disconnection might cause the split of the communication

graph.

This paper extends the preliminary results on these topics that have

been presented in [15], [16].

II. PRELIMINARIES

A. Definition of the Multi–Robot System

Consider a group of N mobile robots, each one with single

integrator dynamics defined as follows:

ṗi = ui (1)

where pi ∈ Rm is the position of the i–th robot, and ui is the

control input. Let p =
[

pT1 . . . pTN
]T

∈ RNm be the state vector of

the multi–robot system.

Assume that each robot has the capability to localize itself with

respect to a common global reference frame. Note that, if only

relative distance and angular measurements are available, this could

be achieved using the algorithm described in [17].

Let Ni be the neighborhood of the i–th robot, that is the set of

robots that can exchange information with the i–th one. The following

simplified communication model is assumed: a bidirectional com-

munication link is established between two robots if their distance

is smaller than the maximum communication range. Let then the

communication architecture among the robots be described by means

of an undirected graph G = {V, E}. Each robot i corresponds to a

node i ∈ V of the graph, and each link between two robots i and j

corresponds to an edge eij ∈ E of the graph. Then, Ni is defined as

follows:

Ni = {j ∈ V such that j 6= i and ‖pi − pj‖ ≤ R} (2)

where R is the maximum communication range. It is worth noting

that all the proposed concepts can be extended to more realistic com-

munication models, considering for instance line–of–sight constraints,

exploiting the concept of generalized connectivity introduced in [18].

Let then A ∈ RN×N be the adjacency matrix of the communica-

tion graph, and let each element aij be defined as the weight of the

edge eij . Namely, aij is a positive number if j ∈ Ni, zero otherwise.

Since undirected graphs are considered, it follows that aij = aji. Let

L ∈ RN×N be the (weighted) Laplacian matrix of the graph, and

let λ2 be the second smallest eigenvalue of L. As is well known,

λ2 > 0 if and only if the graph is connected: then, λ2 is defined

as the algebraic connectivity of the graph. Further details on graph

theory can be found in [19].

B. Connectivity maintenance and estimation procedure

In [11], the following control law is introduced:

ṗi = u
c
i = csch

2 (λ2 − ǫ)
∂λ2

∂pi
(3)

with ǫ the desired lower–bound for the value of λ2.
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According to the communication model described in Section II-A,

the edge–weights aij are defined as follows:

aij =







e
−

(

‖pi−pj‖
2
)

/(2σ2)
if ‖pi − pj‖ ≤ R

0 otherwise
(4)

The scalar parameter σ is chosen to satisfy the threshold condition

e−(R
2)/(2σ2) = ∆, where ∆ is a small predefined threshold. This

definition of the edge–weights introduces a discontinuity in the

control action, that can be avoided introducing a smooth bump

function, as in [20].

Let v2 be the eigenvector corresponding to the eigenvalue λ2.

Given the definition of the edge–weights in Eq. (4), the value of
∂λ2

∂pi
can be computed as shown in [10]:

∂λ2

∂pi
=

∑

j∈Ni

−aij

(

v
i
2 − v

j
2

)2 pi − pj

σ2
(5)

where vk2 is the k–th component of v2.

The computation of the eigenvectors of the Laplacian matrix is a

centralized operation. Hence, the actual values of λ2, v2 and
∂λ2

∂pi
are not available to the robots. Nevertheless, it is possible to exploit a

decentralized procedure that allows each robot to obtain an estimate

of these values. Specifically, the power iteration procedure described

in [21] may be exploited to design the following update law:

˙̃v2=−k1Ave
({

ṽ
i
2

})

1− k2Lṽ2 − k3

(

Ave

({

(

ṽ
i
2

)2
})

− 1

)

ṽ2

(6)

where k1, k2, k3 > 0 are the control gains, and Ave (·) is the

averaging operation. Furthermore, ṽi2 is defined as the i–th robot’s

estimate of vi2, that is the i–th component of the eigenvector v2, and

ṽ2 =
[

ṽ12 , . . . , ṽ
N
2

]T
.

To implement the update law in Eq. (6) in a decentralized way,

the averaging operation is implemented by means of the PI average

consensus estimator described in [22].

Since there are two averaging operations in the update law in

Eq. (6), two PI consensus estimators must be run:

• the first one, whose input is ṽi2, provides zi1 as the i–th robot’s

estimate of Ave
({

ṽi2
})

;

• the second one, whose input is
(

ṽi2
)2

, provides zi2 as the i–th

robot’s estimate of Ave
({

(

ṽi2
)2
})

.

Thus, the following decentralized version of the update law in

Eq. (6) is obtained according to [11]:

˙̃vi2=−k1z
i
1 − k2

∑

j∈Ni

aij

(

ṽ
i
2 − ṽ

j
2

)

− k3

(

z
i
2 − 1

)

v
i
2 − k4

∣

∣

∣
ṽ
i
2

∣

∣

∣
ṽ
i
2

(7)

for some constant k4 > 0. As shown in [11], the presence of this

term is fundamental to guarantee the boundedness of the estimation

error. As will be shown later on, the boundedness of the estimation

error is necessary to ensure connectivity maintenance.

Let λ̃2 be the value that the second smallest eigenvalue of the

Laplacian matrix would take if ṽ2 were the corresponding eigenvec-

tor. As shown in [10], [11], λ̃2 can be computed as follows:

λ̃2 =
k3

k2

[

1− Ave

({

(

ṽ
i
2

)

2
})]

. (8)

Moreover,
∂λ̃2

∂pi
can be computed as:

∂λ̃2

∂pi
= ṽ

T
2

∂L

∂pi
ṽ2 =

∑

j∈Ni

∂aij

∂pi

(

ṽ
i
2 − ṽ

j
2

)

2

(9)

Then, from the definition of the edge–weights aij given in Eq. (4):

∂λ̃2

∂pi
=

∑

j∈Ni

−aij

(

ṽ
i
2 − ṽ

j
2

)2 pi − pj

σ2
(10)

The actual value of λ̃2 can not be computed by each robot. In

fact, the real value of Ave
({

(

ṽi2
)2
})

is not available. Nevertheless,

an estimate of this average, namely zi2, is available to each robot.

Hence, the i–th robot can compute its own estimate of λ2, namely

λi
2, as follows:

λ
i
2 =

k3

k2

(

1− z
i
2

)

(11)

As shown in [11], λi
2 is a good estimate of both λ2 and λ̃2. More

specifically, it has been proven that ∃Ξ, Ξ′ > 0 such that

∣

∣λ2 − λi
2

∣

∣ ≤ Ξ ∀i = 1, . . . , N
∣

∣

∣
λ̃2 − λi

2

∣

∣

∣
≤ Ξ′ ∀i = 1, . . . , N

(12)

From Eq. (12), it follows that
∣

∣

∣
λ2 − λ̃2

∣

∣

∣
≤ Ξ + Ξ′

(13)

The control law introduced in Eq. (3) will then be implemented

introducing each robot’s estimate, that is:

u
c
i = csch

2

(

λ
i
2 − ǫ̃

) ∂λ̃2

∂pi
(14)

with ǫ̃ ≥ ǫ+ Ξ+ Ξ′.

III. CONNECTIVITY MAINTENANCE IN THE PRESENCE OF AN

EXTERNAL CONTROL TERM

In this section the control law given in Eq. (3) is extended by

considering an additional desired control term as follows:

ṗi = u
c
i + u

d
i (15)

where uc
i is the control term introduced in Eq. (14), while ud

i is

a control term used to obtain some desired behavior. Namely, the

control term ud
i is an unknown bounded function, that is

∥

∥ud
i

∥

∥ ≤ uM .

The effectiveness of the control strategy defined so far will now be

proven. More specifically, connectivity maintenance will be analyt-

ically demonstrated hereafter. For this purpose, as in [11], consider

the following energy function:

V (p) = coth
(

λ̃2 − ǫ̃
)

(16)

The energy function V (p) given in Eq. (16) is non–increasing with

respect to λ̃2 and non–negative for any λ̃2 > ǫ̃.

Lemma 1 Assume the value of the algebraic connectivity to be λ2 >

ǫ̃+ Ξ+ Ξ′. Then the following condition holds:

csch
2

(

λ
i
2 − ǫ̃

)

≥ csch
2

(

λ̃2 + Ξ′ − ǫ̃
)

, ∀ i = 1, . . . , n. (17)

Proof: According to Eq. (12), if the value of λ2 is greater than

ǫ̃+ Ξ+ Ξ′, then the value of λi
2 is greater than ǫ̃, ∀i = 1, . . . , N as

well. Therefore, since the function csch2
(

λi
2 − ǫ̃

)

is monotonically

decreasing with respect to λi
2, the following condition holds:

csch
2

(

λ
i
2 − ǫ̃

)

≥ csch
2

(

λ
MAX
2 − ǫ̃

)

(18)

where, according to Eq. (12), λMAX
2 is defined as follows:

λ
MAX
2 = max

i=1,...,N

{

λ
i
2

}

≤ λ̃2 + Ξ′
(19)
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Proposition 1 Consider the dynamical system described by Eq. (15).

Let Ξ, Ξ′ be defined according to Eq. (12). Then, ∃ ǫ, ǫ̃ such that,

if the initial value of λ2 > ǫ̃ + Ξ + Ξ′, the control law defined in

Eq. (15) ensures that the value of λ2 never goes below ǫ.

Proof: In order to prove the statement, the partial derivative of

the energy function introduced in Eq. (16) is computed, with respect

to robot i, as:

∂V

∂pi
=

∂V

∂λ̃2

∂λ̃2

∂pi
= −csch

2

(

λ̃2 − ǫ̃
) ∂λ̃2

∂pi
(20)

From Eqs. (14), (15), (20), it follows that the time derivative of V (p)
can be computed as follows:

V̇ (p) = ∇pV (p)T ṗ =
N
∑

i=1

∂V

∂pi

T

ṗi =

N
∑

i=1

[

−csch2

(

λ̃2 − ǫ̃
) ∂λ̃2

∂pi

]T [

csch2
(

λi
2 − ǫ̃

) ∂λ̃2

∂pi
+ ud

i

]

(21)
Given the boundedness of the additional control term ud

i the time
derivative V̇ (p) can be restated as:

V̇ (p) ≤ csch2
(

λ̃2 − ǫ̃
)

N
∑

i=1



−csch2
(

λi
2 − ǫ̃

)

∥

∥

∥

∥

∥

∂λ̃2

∂pi

∥

∥

∥

∥

∥

2

+

∥

∥

∥

∥

∥

∂λ̃2

∂pi

∥

∥

∥

∥

∥

uM





(22)

As a result, the time derivative V̇ (p) ≤ 0 if the following condition

holds:

N
∑

i=1

[

csch2
(

λi
2 − ǫ̃

)

∥

∥

∥

∥

∂λ̃2

∂pi

∥

∥

∥

∥

2
]

≥ uM

N
∑

i=1

∥

∥

∥

∥

∂λ̃2

∂pi

∥

∥

∥

∥

(23)

Furthermore, according to Lemma 1, a sufficient condition to satisfy

the inequality in Eq. (23) may be written as:

csch
2

(

λ̃2 + Ξ′ − ǫ̃
)

N
∑

i=1

∥

∥

∥

∥

∂λ̃2

∂pi

∥

∥

∥

∥

2

≥ uM

N
∑

i=1

∥

∥

∥

∥

∂λ̃2

∂pi

∥

∥

∥

∥

(24)

Assume now that the following condition holds:

N
∑

i=1

∥

∥

∥

∥

∂λ̃2

∂pi

∥

∥

∥

∥

2

6= 0 (25)

Then, the inequality in Eq. (24) can be rewritten as follows:

csch
2

(

λ̃2 + Ξ′ − ǫ̃
)

≥ uM

N
∑

i=1

∥

∥

∥

∥

∂λ̃2

∂pi

∥

∥

∥

∥

N
∑

i=1

∥

∥

∥

∥

∂λ̃2

∂pi

∥

∥

∥

∥

2
= H (p) > 0 (26)

which implies

λ̃2 ≤ λ̄2 (p) = settcsch
(

√

H (p)
)

+ ǫ
′

(27)

where ǫ′ = ǫ̃−Ξ′, and settcsch (·) is the inverse function of csch (·).
At this point, it should be noticed that λ̄2 (p) > ǫ′ always exists such

that the condition in Eq. (27) is satisfied. This implies that:

V̇ (p) ≤ 0, ∀λ̃2 ≤ λ̄2 (p) (28)

Therefore, ∀λ̃2 ≤ λ̄2 (p), the energy function V (p) does not increase

over time.

With a slight abuse of notation, let λ2 (t) and λ̃2 (t) be the values

of λ2 and λ̃2 at time t.

It is worth remarking that λ2 (0) > ǫ̃ + Ξ + Ξ′. Subsequently, it

follows that, according to Eq. (13), λ̃2 (0) > ǫ̃.

It is possible to show that the same condition holds even if Eq. (25)

is not verified. In fact, in this case, the value of λ̃2 (t) does not

change, and it is then trivially lower–bounded by its initial value.

Therefore, from Eq. (27), it follows that, if λ̃2 (0) > ǫ′, then λ̃2 (t)
will never go below ǫ′ for any t > 0.

Then, the control law in Eq. (15) ensures that the value of λ2 never

goes below ǫ = ǫ′ − Ξ = ǫ̃− Ξ′ − Ξ.

IV. ENHANCED CONTROL ACTION

As will be clearly shown in the simulations described in Sec-

tion V-A, the control strategy described in Section III influences the

behavior of the system, interfering with the primary goal of the multi–

robot system. Hence, in this section, a selective action is introduced

to enhance this control strategy. The objective is twofold:

1) to reduce the overall control effort introduced by the connec-

tivity maintenance control action.

2) to reduce the interference between the connectivity mainte-

nance control action and the main task of the system.

In order to achieve these goals, the control law given in Eq. (14)

is modified as follows:

u
c
i = γi csch

2

(

λ
i
2 − ǫ̃

) ∂λ̃2

∂pi
(29)

where the coefficient γi ∈ R is used to modulate the control action

as will be explained hereafter.

The neighborhood of the i–th robot, that is Ni defined in Eq. (2),

can be decomposed as follows:

Ni = N c
i +N f

i (30)

where:

• N c
i is the set of the close neighbors of the i–th robot,

• N f
i is the set of the far neighbors of the i–th robot.

These two sets are defined as follows:

N c
i = {j ∈ Ni such that ‖pi − pj‖ ≤ δR}

N f
i = {j ∈ Ni such that ‖pi − pj‖ > δR}

(31)

where δ ∈ (0, 1) is a predefined threshold. Note that, according to

this definition, N f
i ∩N c

i = ∅.

Moreover, the definition of isolated robot is now introduced.

Definition 1 (Isolated robot) A robot j is considered isolated, from

the robot i’s perspective, if it belongs to N f
i and it does not belong

to the N c
k for any of the k ∈ N c

i , that is:

j ∈ N f
i , and ∄ k ∈ N c

i such that j ∈ N c
k (32)

Hence, the following definition of critical robot is introduced.

Definition 2 (Critical robot) The i–th robot identifies itself as

critical if at least one of its neighbors is isolated.

The definition of critical robot exhibits a symmetry property, that is:

If the i–th robot considers itself as critical by identifying the j–th

one as isolated, then the j–th robot considers itself as critical by

identifying the i–th one as isolated, as well.

This is a simple consequence of some geometrical facts, under the

assumption of common communication range R.

As a result, the connectivity maintenance control action is limited

to those robots whose disconnection may lead to the loss of connec-

tivity. Thus, the coefficient γi in Eq. (29) can be defined as follows:

γi =

{

1 if the i–th robot is critical

ρ otherwise
(33)

with ρ ∈ (0, 1) arbitrarily small.

Proposition 2 Consider the dynamical system described by Eq. (15).

Let Ξ,Ξ′ be defined according to Eq. (12). Then, ∃ ǫ, ǫ̃ such that, if
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i

j

(a) i and j are identified as critical
robots

i

j

(b) i and j are identified as critical
robots

i

j

k

(c) i and j (and k) are identified
as critical robots

i

(d) i and all its neighbors are iden-
tified as critical robot

i

j

(e) i and j are clearly identified as
non–critical robots

Fig. 1. Decision algorithm to define the critical robots: some examples

the initial value of λ2 > ǫ̃+Ξ+Ξ′, the control law given in Eq. (15)

with the connectivity control term uc
i defined in Eq. (29) ensures that

the value of λ2 never goes below ǫ.

Proof: The proof is analogous to that of Proposition 1, and is

then omitted.

The five configurations shown in Fig. 1 for the communication

graph are representative of all the possible scenarios:

• in Fig. 1(a), the j–th robot is isolated: only the i–th one is in

its neighborhood. Then, they are both considered critical, and

γi = γj = 1.

• in Fig. 1(b), the link between the i–th and the j–th robots

links two different components of the graph. Both robots are

considered critical, and γi = γj = 1.

• in Fig. 1(c), the j–th robot is identified as critical. Consequently,

i–th robot is considered critical as well.

• in Fig. 1(d), losing the i–th robot would create two separate

sub–graphs. Hence, the i–th robot is critical.

• Fig. 1(e) represents a situation where the connectivity mainte-

nance action is not needed.

Notably, critical robots are identified by a local policy that only

requires locally available quantities.

Referring to Definition 2, the local policy may be described with

Algorithm 1.

Algorithm 1 Local policy to identify the critical robots

1: γi = 1

2: if
{

N f
i = ∅

}

then

3: γi = ρ

4: end if

5: if
{

∀j ∈ N f
i ∃k ∈ N c

i s.t. j ∈ N c
k

}

then

6: γi = ρ

7: end if

V. SIMULATIONS AND EXPERIMENTAL RESULTS

Several Matlab simulations and experiments on e–puck robots have

been carried out to evaluate the performance of the proposed control

strategy within a formation control application, exploiting the control

law introduced in [23].1

A. Simulations

Simulations have been carried out with a varying number of agents

ranging from N = 3 to N = 30, with randomized initial conditions,

and considering the following set of parameters: {ρ = 10−5, δ =
0.8}.

1) Comparison between standard and enhanced control action: In

order to carry out a quantitative analysis of the advantage introduced

by the enhanced action, a measurement of the required control effort

may be defined as the integral of the control action over time.

As shown in Fig. 2, data have been acquired for a number of

simulated robots ranging from N = 3 to N = 30. For each setup, 15

simulations have been run, randomly changing the initial positions

of the agents, as well as the obstacles’ positions. From the statistical

analysis of the acquired data, it turns out that the introduction of the

enhanced action drastically reduces the required control effort. Even

though the actual value of the reduction of the required control action

heavily depends on the particular application and environment, it is

worth noting that, in the simulation scenario described above, the

effort is always reduced, on average, by more than 40%. Moreover,

it is important to highlight the fact that the control effort reduction

appears increasing with the number of robots involved. This can be

explained considering that for a randomly generated graph (that is

without imposing any particular structure on the topology, such as

a ring or a chain) the percentage of critical robots decreases as

the overall number of robots increases. Hence, the introduction of

the enhanced control action (described in Section IV) increases the

scalability of the connectivity maintenance strategy.

2) Comparison with a local connectivity maintenance control

strategy: The performance of the proposed control strategy has

been evaluated by comparing it with a typical local connectivity

maintenance control strategy [6]. To perform the comparison, the

following simulation setup has been implemented: a formation of

6 agents is controlled to reach a target position, while moving

though randomly placed point obstacles. Robots initial positions

are randomly chosen, guaranteeing that the initial distance of the

barycenter of the robots’ positions and the target is equal to 15m.

The steady state distance of the barycenter of the formation from

the target has then been evaluated. Table I summarizes the results of

1A video clip containing different runs of simulations and experiments is
freely available online at http://www.arscontrol.unimore.it/troconn13
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Fig. 2. Reduction of the control effort provided by the enhanced action

Distance of the barycenter from the target

Mean Standard deviation

Local action [6] 6.344 3.124

Standard action 0.0 0.0

Enhanced action 0.0 0.0

TABLE I
COMPARISON BETWEEN LOCAL AND GLOBAL CONNECTIVITY

MAINTENANCE CONTROL ACTIONS

the simulations. Specifically, 30 simulation runs have been performed

with three different connectivity maintenance control actions: the

local action [6], the standard action proposed in Section III, and the

enhanced action proposed in Section IV. It turns out that the local

connectivity maintenance control action often makes the group stop

in undesired positions: this is due to the fact that keeping each link

among the robots causes a rigid behavior for the formation, that is

then not allowed to overcome the obstacles. Conversely, as expected,

the proposed global connectivity maintenance control strategy always

allows the formation to reach the target. Notably, the same result is

obtained both with the standard and with the enhanced action.

3) Perturbations on the desired behavior: Simulations have been

performed to evaluate the perturbation on the desired behavior of the

system introduced by the connectivity maintenance control action. For

this purpose, the following analysis has been carried out over repeated

simulations: a group of six point agents, starting from random initial

positions, has been controlled to perform formation control in a free

environment (i.e. without obstacles), respectively with and without

connectivity maintenance. The results of 50 simulation runs are

represented in Fig. 3. Specifically, the figure represents the absolute

value of the difference (mean and standard deviation) between the

control law applied to the agents with and without connectivity

maintenance: blue solid line represents the effect of the standard

action, while red dashed line represent the effect of the enhanced

action. Both for the standard and the enhanced actions, it is possible

to notice that the difference is greater than zero only during the initial

transient, when the estimation process has not converged yet. It is

worth noting that this effect can be avoided letting the estimation

system evolve for a small amount of time before applying control

laws to the system.

B. Experiments

Experiments have been carried out on a group of four e–puck

robots moving in a bounded arena. To implement the proposed

strategy on nonholonomic systems, the well known feedback lin-

earization technique was applied [24]. The control algorithm was

implemented on a centralized PC, but emulating a decentralized

Average control effort: ūc =
1

N

N
∑

i=1

|uc
i |

Mean Standard deviation

Standard action 61.9517 155.8315

Enhanced action 4.9586 6.4957

TABLE II
COMPARISON BETWEEN STANDARD AND ENHANCED CONTROL ACTIONS

computation procedure [25]. In order to carry out a statistical analysis,

30 experimental runs have been performed, with four e–puck robots

performing a rendezvous task moving in a bounded arena, where

ten point obstacles were placed. The obstacles’ positions, as well

as the robots’ initial positions, were randomly changed within a

100cm radius circle. Results (mean value and standard deviation)

are summarized in Table II. The obtained results clearly highlight

the advantages introduced by the use of the enhanced control law.

VI. CONCLUSION

In this work the connectivity maintenance problem for a multi–

robot system has been investigated. First, a control strategy that

ensures connectivity maintenance in the presence of an external

bounded control term has been proposed. Successively, an enhanced

decentralized control law has been proposed based on the concept

of critical robots, that is robots for which a disconnection might

cause a split of the communication graph. By exploiting this concept,

a more selective control action has been designed. This allows to

both reduce the control effort and avoid unnecessary action of the

original connectivity maintenance control law, thereby reducing its

effect on the overall performance of the system. A theoretical analysis

of the effectiveness of the proposed control law has been carried out

along with simulations and experiments, to corroborate the obtained

theoretical results. Future work will be focused on the analysis

of the proposed connectivity control law for different connectivity

modeling as well as for multi–robot systems characterized by a

directed communication graph.
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