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Gossip Based Centroid and Common Reference

Frame Estimation in Multi-Agent Systems
Mauro Franceschelli and Andrea Gasparri

Abstract—In this work the decentralized common reference
frame estimation problem for multi-agent systems in absence

of any common coordinate system is investigated. Each agent
is deployed in a 2-D space and can only measure the relative
distance of neighboring agents and the angle of their line of sight
in its local reference frame, no relative attitude measurement is
available. Only asynchronous and random pairwise communica-
tions are allowed between neighboring agents. The convergence
properties of the proposed algorithm are characterized and
its sensitiveness against additive noise on the relative distance
measurements is investigated. An experimental validation of the
effectiveness of the proposed algorithm is provided.

Index Terms—Multi-Agent Systems, Sensor Network Localiza-
tion, Distributed Randomized Algorithms, Consensus, Gossip.

I. INTRODUCTION

The development of decentralized motion coordination al-

gorithms for networked multi-agent systems has drawn the

attention of a large part of the control systems community. In

this framework, coordination algorithms have been developed

making use of relative distance measurements between agents

to perform the most various tasks such as aggregation and

dispersion under topological constraints [1], rendezvous for

nonholonomic agents [2], leader following with switching

topologies [3], attitude control [4], attitude tracking [5], con-

nectivity maintenance [6] and formation control [7].

When dealing with decentralized motion coordination prob-

lems, the greatest limitation is that a common assumption

forbids agents to have access to absolute position information

(GPS) and thus have a common reference frame that makes

it easy to interpret the information passed by other agents. In

some cases the agents are not supposed to know their absolute

position, but share a common attitude reference to exchange

motion information. This can be achieved by using a compass

and gravity as common reference for their coordinate system

or other external references. In all these scenarios several

technological countermeasures have to be undertaken for the

implementation of coordination algorithms increasing the cost

and complexity of the agents design.

In our opinion, having a common reference frame greatly

simplifies the design of coordination algorithms. Furthermore,

not requiring hardware components like GPS could signifi-

cantly advance the technological feasibility of mobile swarms
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of agents, reducing their dependence on the global positioning

system in the low level control loops thus improving their

robustness against GPS denial of service (DoS) attacks.

In this work, we propose a decentralized solution to the

centroid and common reference frame estimation problem

based on a gossip communication scheme [8], [9], [10],

[11], [12], i.e., it requires only asynchronous and random

pairwise communications between pairs of agents. The pro-

posed algorithm does not require the agents to share any

common reference frame nor to measure their attitude, or their

relative orientation but only to detect and measure their relative

position. A preliminary version of this work can be found in

[13]. Furthermore we quantify the amplitude of the worst case

errors in the estimated common reference frame.

The contributions of this paper are the following:

• A decentralized algorithm based on gossip that makes the

multi-agent system achieve agreement on a common point

and on a common reference frame in a 2-dimensional

scenario.

• A theoretical analysis of the convergence properties of

the algorithm and its sensitivity against additive noise on

the relative distance measurements.

• Analytical bounds on worst case performance regarding

errors in the estimated common reference frame.

• Experimental results to validate the noise model as-

sumptions and verify the effectiveness of the proposed

algorithm in a real-world scenario.

II. RELATED WORK

The network centroid and common reference frame es-

timation problems are related to the network localization

problem. In this field, several decentralized techniques have

been proposed.

In [14] the problem of estimating the absolute positions of

sensors in a sensor network is addressed. The authors propose

DILOC, a distributed iterative algorithm based only on relative

distance measurements. They assume that there exists a set of

anchor nodes that know their positions and that the rest of the

nodes are inside the convex hull spanned by the anchor nodes.

They also assume that each node has a sufficient number of

neighbors so that it can triangulate its position with respect to

its neighbors.

In [15] the authors propose a distributed algorithm based

on the information version of the Kalman Filter for the rel-

ative localization problem in sensor networks. The algorithm

distribution is achieved by neglecting the coupling terms in

the Information matrix. This allows to run an independent

reduced-order filter onboard each node. An interlacement

technique is proposed to cope with the error introduced by

this approximation.
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In [16], the authors investigate under which conditions the

sensor network localization problem is well-posed in the pres-

ence of noise. The authors show that given the graph theoretic

conditions that would guarantee unique localizability in the

noiseless case, localization in the noisy case can be stated as

a minimization problem, the solution of which approaches the

true sensor positions continuously as the noise perturbations

on the measurements approach zero.

In [17], the authors investigate how to minimize the effects

of noisy distance measurements on localization of multi-agent

formations. In particular, they introduce a criterion to measure

the effect of distance measurement error on the localization of

agents. Then, they introduce a methodology for selection of

anchors among the agents to minimize that error.

In [18], the formation stabilization problem for relative

sensing networks is proposed. By assuming all the agents

reference frames to be equally oriented, the authors propose a

distributed coordination algorithm for the shape stabilization

of the relative sensing network to a desired formation.

In [19], [20], [21], decentralized algorithms for the attitude

synchronization problem in a 3-d space are given. Compared to

our result the authors focus their analysis on the estimation of a

common attitude in a 3d-space rather than a common reference

frame and they assume the measurements to be noise-free

while we consider noise in the relative distance measurements.

Their approach is developed in continuous time and based on

a synchronous communication mechanism while we consider

asynchronous communications in discrete time, furthermore

we only allow to measure the direction of the line-of-sight

instead of the attitude.

In [22] the authors solve the localization problem under

noisy measurements by estimating the relative positions of

the sensors with respect to the network centroid. In particular,

the authors do not require the availability of anchors but they

assume all the agents to have their reference frames equally

aligned by exploiting a compass or an attitude synchronization

algorithm and adopt a synchronous communication mecha-

nism. In this work we do not exploit these assumptions.

In [23] the synchronization problem for a multi-agent

system where the state of the agents is represented by a

phase in the unit circle is addressed. This method could be

used in the framework of multi-vehicle systems to perform

distributed agreement on a common heading if the information

about the relative attitude of the agents is available. Our work

differs from [23] in that to compute a common heading for

the networked system we perform agreement on two distinct

points of the plane and consider one of these as the origin of

the estimated common reference frame while the other fixes a

common heading. Our approach allows to compute a common

heading without knowledge of the relative attitude for any

possible initial condition.

In [24], [25] the decentralized centroid estimation problem

in absence of reference frames is investigated in a 3-D space.

The authors show that the algorithm converges if the network

topology is described by a rigid graph.

Finally, examples of gossip based algorithms which exploit

pairwise averaging can be found in [8] with application to

the distributed average problem, in [10] for the distributed

averaging with quantized states and in [26], [12] for distributed

load balancing, discrete consensus and heterogeneous multi-

vehicle routing problem. Furthermore in [9], [11] algorithms

for the distributed average problems based on a broadcast

gossip communication scheme are presented.

III. PROBLEM DESCRIPTION

Let graph G = (V,E) describe the network topology of

a multi-agent system, where V = {1, . . . , n} is the set of

agents and E ⊆ {V × V } is the set of edges representing

possible communication channels. Let us denote with a time

varying graph G(t) = (V,E(t)) the point-to-point interactions

at time t, an edge (i, j) ∈ E(t) exists only if there is

an interaction between agent i and j at time t. A position

pi = [pi,x pi,y] ∈ R2 in a plane is associated to each agent

i ∈ V . We assume that agents can not overlap position, that

is pi 6= pj, ∀i, j ∈ V . Each agent has a local orthonormal

reference frame Σi(pi, θi) = [x̂i, ŷi]
T where pi is its origin.

Let θi be the angle between the x-axis of Σi and the x-axis

of a common reference frame Σ unknown to every agent. The

generic estimate of agent i of the agreement point is denoted

as si in the common frame Σ while sij denotes the estimate

sj in the reference frame Σi.

Let us consider a pair of agents i and j for which

(i, j) ∈ E(t), this implies that the agents are able to sense

their relative position reciprocally with respect to their local

orthonormal reference frames. To this end, let us define the

direction of the line of sight by which agent i is able to

sense agent j with respect to a common reference frame Σ as

cij =
(pj−pi)
‖pj−pi‖

where ‖·‖ is the Euclidean norm. The direction

of the line of sight can be expressed with respect to the local

frame Σi of agent i as ciij = R(θi)
T cij , where R(θi) is a

rotation matrix that aligns the local frame Σi to the common

one Σ. Note that, it holds R(θi)c
i
ij = −R(θj)c

j
ji. Let us define

the orthogonal vector c⊥ij = R(θi)c
i
ij

⊥
so that a right handed

frame is built. In addition, let the relative distance between

two agents i and j be dij = dji = ‖pi − pj‖. Finally, graph

G(t, t+T ), represents the union of all the active edges during

the interval of time [t, t+ T ] as G(t, t + T ) =
⋃t+T

τ=t G(t).
We now state the fundamental working assumptions that

characterize this work:

• Communications are asynchronous based on gossip.

• Each agent can sense the relative position (distance and

angle) of neighboring agents with respect to its local

reference frame.

• The network topology can be described by a connected

undirected time-varying graph.

Note that, for each agent i it is possible to express its estimate

of the agreement point si with respect to a common reference

frame as follows:

si = R(θi)s
i
i + pi. (1)

We point out that in our framework the agents do not know

parameters θi and pi, therefore they can not exploit eq. (1).

Our objective is to build a reference frame common to

every agent in the network by making each agent estimate

locally two common reference points in their own local set of

coordinates.
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IV. DECENTRALIZED ESTIMATION OF A COMMON POINT

WITH NOISY MEASUREMENTS

In this section, we present an iterative algorithm to achieve

an agreement on a common point in a 2-dimensional space

under the working assumptions given in Section III.

The proposed algorithm consists in iteratively choosing at

random pairs of agents i, j according to an edge selection

process e that in turn perform the next four simple operations:

1) Estimation of the relative noisy distance ‖pi − pj‖ and

direction of the line of sight ( ciij and cjji) in the

respective local reference frames.

2) Exchange of the projection of the local estimations over

their line of sight (sii(t)
T ciij and sjj(t)

T cjji ) and the

perpendicular to it (sii(t)
T ci⊥ij and sji (j)

T cj⊥ji ).

3) Conversion of the estimations of the location of the

agreement point (sji and sij) in local coordinates accord-

ing to eq. (2).

4) Update of the current estimation (sii(t+1) and sjj(t+1))
according to the local update rule given in eq. (3).

In particular, agent i can compute sij by exploiting the

common line of sight ciij as follows [13]:

sij = (dij − sjTj cjji)c
i
ij − (sjTj cj⊥ji )c

i⊥
ij , (2)

while the local state update rule R is:

sii(t+ 1) =
sii(t) + sij(t)

2
, sjj(t+ 1) =

sjj(t) + sji (t)

2
. (3)

Note that, communications are sequential, not parallel,

therefore this locals state update rule can be implemented with

a single communication channel used in alternating directions

at different times (half-duplex). Indeed, the update does not

need to be carried out at the same time by both agents.

Furthermore, although an actual implementation takes a finite

interval of time to apply the state update, the state trajectory

can be analyzed without loss of generality by considering this

interval of time as an instant in discrete time.

Let us now characterize how the local interaction rule is

affected by the noisy measurement of the relative distance and

of the angle of the line of sight between a pair of agents. Let

d̄ij =
d̃ij+d̃ji

2 =
dij+δ̃ij+dji+δ̃ji

2 = dij +
δ̃ij+δ̃ji

2 = dij + δ̄ij
be the average between d̃ij , d̃ji which are respectively the

inter-agent distance measured by agent i and agent j and δ̄ij
is the average of the relative distance measurement errors.

It is clear that despite the fact that the two measurements

are different, the agents use the same value of d̄ij in their

respective computations.

Let R(φi)c
i
ij (R(φj)c

j
ji) represent the line of sight between

agent i and j measured by agent i (agent j) where φi (φj )

represent its angular errors. Therefore, agent i computes the

noisy estimate sij by exploiting eq. (2) as follows:

s̃ij = (dij + δ̄ij − sjTj R(φj)c
j
ji)R(φi)c

i
ij

−(sjTj R(φj)c
j⊥
ji )R(φi)c

i⊥
ij .

(4)

Let us now consider the angular errors to be small so that

the approximation of sin(φi) ≈ φi and cos(φi) ≈ 1 gives

an error of less than 1%, i.e., φi ≤ 0.145 radians which

corresponds to about 8.3 degrees. The rotation matrix R(φi)
can be approximated as:

R(φi) =

[
cos(φi) −sin(φi)
sin(φi) cos(φi)

]
= I + φiR(π/2). (5)

Since R(π/2)ciij = ci⊥ij and R(π/2)ci⊥ij = −ciij , we get:

s̃ij = (dij + δ̄ij − sjTj cjji − φjs
jT
j cj⊥ji )(c

i
ij + φic

i⊥
ij )

−(sjTj cj⊥ji − φjs
jT
j cjji)(c

i⊥
ij − φic

i
ij).

(6)

By some manipulations eq. (6) can be put in the following

form:

s̃ij = sij + δ̄ijc
i
ij − φj

(
sjTj cj⊥ji c

i
ij − sjTj cjjic

i⊥
ij

)

+φiR(π/2)sij + φiδ̄ijc
i⊥
ij

−φjφi

(
sjTj cjjic

i
ij + sjTj cj⊥ji c

i⊥
ij

)
.

(7)

It is clear from eq. (7) that angular errors have a disruptive

potential for the convergence properties of the proposed algo-

rithm since the terms proportional to it are also proportional

to the norm of the current estimation ‖sjj‖. Therefore, for

the proposed algorithm it is mandatory to implement sensory

systems that give precise angular measurements while errors

in the distance measurements can be tolerated. In Section VII

we performed experiments with our mobile robotic platform

and show that even cheap vision-based systems can achieve

sufficiently accurate angular measurements and therefore im-

plement successfully the proposed algorithm. We analyze the

effect of errors in the distance measurements assuming angular

measurements to be accurate.

The following proposition shows how the proposed gossip

algorithm can be stated with respect to a common reference

frame.

Lemma 1: The gossip algorithm with set of states S and

local update rule R as in eq. (3) can be equivalently stated

with respect to a common reference frame Σ as follows:

x(t+ 1) = W (t)x(t) +
δ̄ij
dij

(
(ei−ej)(ei−ej)

T

2 px

)
,

y(t+ 1) = W (t)y(t) +
δ̄ij
dij

(
(ei−ej)(ei−ej)

T

2 py

)
,

(8)

where the vectors x(t) = [x1(t), . . . , xn(t)]
T ∈ Rn and

y(t) = [y1(t), . . . , yn(t)]
T ∈ Rn are a compact representation

for the agents estimate si = [xi(t), yi(t)]
T

with i = 1, . . . , n,

W (t) for a given time t such that e(t) = (i, j) is defined

as W (t) = I − (ei−ej) (ei−ej)
T

2 , with ei = [0 . . . , 1, . . . , 0]T

a n×1 vector with all elements equal to 0 but the i-th element

equal to 1, and δ̄ij =
δ̃ij+δ̃ji

2 is the average of the distance

measurements errors.

Proof: See Appendix A.

The next Lemma shows that the average of the estimates is

time-invariant despite noisy measurements.

Lemma 2: Let us consider a multi-agent system that exe-

cutes the local update rule in eq. (3) and consider only noisy

distance measurements. Then, the average s̄ of the agents’

estimations is constant with respect to a common reference

frame:

s̄(t) =
1

n

n∑

i=1

si(t) = s̄, ∀ t ≥ 0. (9)
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Proof: See appendix B.

Let us now introduce a Theorem to characterize the effect of

noise or errors in the relative distance measurements.

Theorem 3: Consider the dynamics given in eq. (8)

for a system of n agents and the noise affecting the

distance measurements between each pair of agents i
and j, to be upper bounded by δ̄. If e is such that

∀t, ∃ T : G(t, t+T ) is connected, then the agents’ estimates

converge inside a ball of fixed radius around the point located

at the average of the estimates s̄, that is:

∀ i ∈ V, si ∈ Br, Br =
{
z ∈ R

2 : ‖z − s̄‖ ≤ d(G) δ̄
√
2
}
.

with d(G) the diameter of the graph G.

Proof: See Appendix C

Remark 1: If each agent initializes its estimate sii(0) to

zero for all i = 1, . . . , n, and there are no measurement errors,

then all the agents’ estimates converge towards the network

centroid, i.e., limt→∞ si(t) = Ri(θi)s
i
i(t) + pi =

1
n

∑n

i=1 pi.

Regarding the convergence time of the proposed algorithm,

the general analysis for gossip algorithms based on random-

ized and pairwise averaging proposed in [8] can be applied.

In particular, by following this analysis let us assume each

agent i to have a clock which ticks at the times of a rate 1

Poisson process. At each tick, this agent i performs a state

update. Furthermore, let us define the ε-averaging time of a

gossip algorithm as:

Tconv(ε) = sup
s(0)

inf

{
t : Pr

(‖s(t)− s̄1‖
‖s(0)‖ ≥ ε

)
≤ ε

}
,

where s̄ is the point where the algorithm converges, i.e., the

average of the initial conditions. In particular, the following

upper-bound for Tconv(ε) has been given in [8]:

Tconv(ε) ≤
3 log ε−1

log λ2 (E [W ])
−1 , (10)

where the term λ2 (E [W ]) represent the second smallest

eigenvalue of the expectation of matrix W (k) which is chosen

according to a stochastic process.

V. DECENTRALIZED ESTIMATION OF A COMMON

REFERENCE FRAME

In this section, a technique to build a common reference

frame in a decentralized fashion by exploiting the algorithm

introduced in Section IV is described. The key idea is to let the

network of agents estimate two common reference points in

local coordinates and use them to compute a reference frame

common to every agent. More specifically, the algorithm works

as follows:

1) Estimate two common reference points in local coordi-

nates Fi = {f1,i, f2,i}
2) Use the first point f1,i to identify the origin of the

common frame Or = f1,i and the second point f2,i to

compute a common heading vector x with unitary norm.

The proposed approach is based on distance and line of sight

measurements affected by noise, bias or errors. Therefore,

agreement on these two points (one being the barycenter of

f2

f2,i

f2,j

f1

f1,j

f1,i

Θe

Fig. 1. Maximum orientation error between two estimated common frames

the network and another being a random point in space) is

affected by a maximum error characterized in Theorem 3,

that is, each agent estimates a point inside a circle centered

at the barycenter of the initial condition of the estimates

with radius d(G)δ̄
√
2. Therefore, the common reference frame

between any pair agents might have an origin that differs at

most by 2d(G)δ̄
√
2. The error in orientation depends also

on the estimation of the second common point. As shown

in Figure 1, to compute the maximum error we draw two

parallel lines passing through the average of the estimated

points f1 = 1
n

∑n

i=1 f1,i and f2 = 1
n

∑n

i=1 f2,i and then

connect the intersection of the circles with the parallel lines

to find the worst case scenario that constructs two reference

frames with maximum orientation error. Let r = d(G)δ̄
√
2

and d = ‖f2 − f1‖2. The maximum orientation error Θe is:

Θe = 2 arcsin

(
2r√

4r2 + d2

)
.

Notably, the orientation error depends both on the maximum

agreement error and on the distance between the two estimated

points. In particular, to reduce this error is sufficient to increase

numerically the amplitude of the random initial conditions

used to estimate f2.

VI. SIMULATION RESULTS

A first campaign of simulations was carried out to evaluate

the tightness of the upper bound given in eq. (10) by assuming

ε = 1%. In particular, we considered a varying number of

agents ranging from 5 to 25 and ideal (noise-free) measure-

ments. Each simulation was performed on a random network

topology and the average over 100 trials was computed.

Each agent executed a state update with a random neighbor

according to a stochastic process with Poisson probability

distribution. Table I reports the obtained results with time units

in seconds. It can be noticed that the actual averaging time

Tconv(ε) is significantly lower than its upper bound.

TABLE I
CONVERGENCE TIME ANALYSIS FOR ε = 1% WITHOUT NOISE AND

VARYING NODES

Number of Agents 5 10 15 20 25

Average Time 5.02 13.78 14.74 11.04 9.81

Upper Bound 42.45 73.57 130.65 186.68 219.09

A second campaign of simulations was carried out to evalu-

ate the effectiveness of the algorithm for noisy measurements

of the relative distance and of the angle of the line of sight

between a pair of agents. An additive noise bounded by a

percentage δ̄ ≤ p
dij

100 of the distance between the given

pair of agents was considered on distance measurements.
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(a) Robotic platform

with vision system

(b) Deployment of the multi-robot system adopted

for the experiment

(c) Sensing pattern (d) The proposed low-cost vision system work-

ing principle.

Fig. 2.

Furthermore, an additive bounded noise φ ∈ [−a, a] was also

considered on the measurements of the angle of the line of

sight between a pair of agents. The compact notation (p, a)
to specify noise parameters is used in Table II. Different

network topologies with a fixed number of agents (10) and

an increasing magnitude of noise were considered. For each

simulation results refer to the average over 100 trials. A

randomized uniform edge selection process was used. Table II

reports the obtained results in terms of relative errors with

respect to the true distance between the generic agent and the

average of the initial conditions. Initial conditions were chosen

to be zero in local coordinates for every agent, the common

heading vector was computed with random initial condition

with magnitude 10. It can be noticed that the estimation error

of the location of the agreement point increases with the

increase of noise magnitude.

TABLE II
RANDOM NETWORK TOPOLOGY (10 NODES) WITH DISTANCE AND

ANGULAR ERRORS (±[%DISTANCE],±[deg])

Noise (10, 4) (15, 8) (20, 12) (25, 16) (30, 20)
Max % Err. 0.019% 0.036% 0.058% 0.081% 0.132%

Mean % Err. 0.010% 0.018% 0.034% 0.051% 0.080%

Max Head. Err. 0.225◦ 0.424◦ 0.733◦ 0.912◦ 1.306◦

A third campaign of simulations was carried out to evaluate

the performance of the algorithm on ring topologies. We

considered a maximum error on the distance measurements

bounded by 10% of the true distance between pairs of nodes

and angular errors bounded by ±4 deg degrees. We considered

a varying number of agents ranging from 5 to 25 with constant

edge length. A randomized uniform edge selection process

was used. The common heading vector was computed with

random initial conditions with magnitude equal to 10. Table III

reports the obtained results in terms of relative errors with

respect to the true distance between the generic agent and

the average of the initial conditions. It can be seen that even

if significant angular errors are considered the algorithm still

achieves small relative errors with respect to the distance

between the agents and the agreement point. The absolute size

of the errors increases as the diameter of the network increases.

Notably, the case with 10 agents provides similar results to the

ones obtained in Table II showing that the existence of cycles

does not affect the algorithm performance.

TABLE III
RING NETWORK TOPOLOGY WITH BOUNDED NOISE (±10%,±4 deg) AND

VARYING NODES

Number of Agents 5 10 15 20 25

Max % Error 0.023% 0.030% 0.029% 0.064% 0.165%

Mean % Error 0.016% 0.017% 0.015% 0.046% 0.147%

Max Heading Err. 0.384◦ 0.177◦ 0.147◦ 0.238◦ 0.461◦

VII. EXPERIMENTAL RESULTS

Experiments have been carried out by exploiting 4 units

of the mobile robotic platform SAETTA which is a low-

cost robotic platform developed at the Rome Tre University,

see [27] for details. In particular, each unit was equipped with

the low-cost vision system shown in Figure 2(a), which allows

to compute the relative distance among robots. Figure 2(b)

depicts the deployment of the multi-robot system adopted for

the experiments.

−800 −600 −400 −200 0 200 400 600 800
200

400

600

800

1000

1200

1400

1600

1800

2000

[mm]

[m
m

]

Fig. 3. Vision System Calibration Results. Crosses (red) represent the real
measured location while circles (blue) the measured location after calibration.

In Section IV, a theoretical characterization of the proposed

algorithm in the presence of noisy measurements has been

carried out under the assumption of accurate angular measure-

ments. The validity of this assumption for the low-cost vision

system used for the experiments is now investigated.

Figure 2(d) depicts the low-cost vision system working

principle: assuming landmarks (colored spheres) to be located

at a certain height hm and a webcam to be mounted on top

of a pole at a given height hp with a given inclination α, it is

possible to obtain a simple geometrical relationship between

the landmark location and the pixels of the CCD of the camera.

Figure 3 describes the accuracy achievable by the adopted
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vision system. Crosses (red) represent the real locations (col-

ored spheres) detected by the webcam, while circles (blue) de-

scribe the estimated locations computed by the vision system

after calibration. Due to the bandwidth constraints imposed

by the hardware communication, i.e., USB 2.0 full-speed

port, frames were collected at very low resolution, 176× 144
pixel. It should be noticed that while the error grows with

the distance on the radial coordinate, it can be considered

negligible on the angular coordinate. In particular, the radial

error is proportional to the measured distance with an upper

bound after the calibration less than 10% of the measured

distance, while the angular error can be described with a

bounded uniform distribution [−4 deg, +4deg]. As a matter

of fact, the angular error is sufficiently small for the adopted

low-cost vision system to justify the approximation made in

in eq. (5).

Figure 2(c) describes the sensing patterns where continuous

lines represent bi-directional sensing links over which an up-

date between a pair of robots can be carried out, while dashed

lines represent unidirectional sensing links which cannot be

used to perform an update. The maximum distance among

robots 1 and 4 is roughly 1500 [mm]. Robots 1 and 4 are

able to sense all the other robots, robots 2 and 3 are able

to sense only robots 1 and 4, respectively. Regarding the
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algorithm implementation, collaboration among pairs of robots

was achieved by means of a gossip communication scheme: i)

each robot woke up randomly every 5 seconds and interacted

with one of its neighbors at random, ii) interacting robots

performed the state update rule given in eq. (3).

Figure 4 depicts the network centroid estimation error

for the four robots running the proposed algorithm in the

presence of noisy measurements due to the adopted low-

cost vision system. According to the obtained results, each

robot was able to achieve an estimate of the network cen-

troid with a bounded error. Note that, all the estimation er-

rors {32.84, 3.50, 6.60, 32.95} [mm] are significantly below

the theoretical upper bound given in Theorem 3 which is

fixed to ≃ 300 [mm], being d(G) = 3, and δ̄ = 70.7
[mm]. Furthermore, a second point was computed to build

a common reference frame. To this end, the agents’ ini-

tial conditions were chosen uniformly at random such that

‖sii(0)‖ ∈ [0, 10000] [mm] resulting in an agreement point at

coordinates f2 = [4140, 1880] [mm]. The estimation errors

are {29.95, 8.29, 10.75, 35.78} [mm]. The distance between

the two agreement points is d = 2562 [mm]. The maximum

angular error in the estimated common reference frame is

Θe = 0.0052◦, corroborating the fact that by choosing initial

conditions sufficiently large for the second point (f2) results in

a negligible angular error on the computation of the common

reference frame.

VIII. CONCLUSIONS

In this work we presented a decentralized algorithm to esti-

mate the centroid and common reference frame in a network of

agents. We considered noisy relative positions measurements

with respect to local reference frames and characterized ana-

lytically the worst case performance. We provided simulations

and experiments to validate the effectiveness of the proposed

algorithm. Future work will focus on extending the method to

a dynamic setting.
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APPENDIX

A. Proof of Lemma 1

Assume an update for a pair of agents i and j is carried out

at time t. According to eq (1), the update of the agent i with

respect to a common frame Σ can be expressed as:

si(t+ 1) =

(
R(θi) s

i
i(t)+pi

)
+
(
R(θi) s

i
j(t)+pi

)

2

=
si(t) + sj(t) + δ̄ij cij

2
.

Equivalently, it is possible to write the update of the agent

j with respect to a common frame Σ as given in eq. (1)

where it should be noticed that δ̄ji = δ̄ij since it is the

computed average of the errors introduced by the two agents

noisy measurements.

At this point, by recalling the definition of cij and by

considering that the update rule is decoupled along the x-axis

and y-axis, the thesis follows.

B. Proof of Lemma 2

Consider eq. (8) along the x-axis. Since W (t) is a symmet-

ric doubly stochastic matrix, it holds:

1
T
nx(t+ 1) = 1

T
n

[
W (t)x(t) +

δ̄ij
dij

(
(ei−ej)(ei−ej)

T

2 px

)]

= 1
T
nW (t)x(t) +

δ̄ij
dij

1
T
n

(
(ei−ej)(ei−ej)

T

2

)
px

= 1
T
nx(t)

where the fact 1T
n

(
(ei−ej)(ei−ej)

T

2

)
= 0

T
n has been exploited.

It follows:

1
T
n x(t) = 1

T
n x(0), ∀ t ∈ R

+.

Furthemore, since the same holds also along the y-axis, then

s̄(t) = s̄, ∀ t ≥ 0, thus proving the statement.

C. Proof of Theorem 3

Consider the following Lyapunov function:

V (t) = Vx(t) + Vy(t) = x(t)T P x(t) + y(t)T P y(t),

with P = I − 11
T

n
such that P ≥ 0 ∀ zx(t) /∈ span(1).

Thus, P is positive semi-definite and its null space represents a

consensus between the agents estimates. In particular, Vx(t+1)
can be written as:

Vx(t+ 1) = x(t)T WT P W x(t)

+
δ̄2ij
d2

ij

(
(ei−ej)(ei−ej)

T

2 px

)T

P
(

(ei−ej)(ei−ej)
T

2 px

)

= x(t)T
(
W − 11

T

n

)
x(t) +

δ̄2ij
d2

ij

(pi,x−pj,x)
2

2

where WT P W = W − 11
T

n
follows from the fact that

W 2 = W and W 11
T

n
= 11

T

n
. Let us now consider the dif-

ference Vx(t+ 1)− Vx(t) as follows:

Vx(t+1)− Vx(t) = −
(
xi(t)− xj(t)

)2

2
+

δ̄2ij
d2ij

(pi,x − pj,x)
2

2
.

By noticing that (pi,x − pj,x)
2 ≤ d2ij , it holds:

δ̄2ij
d2ij

(pi,x − pj,x)
2

2
≤

δ̄2ij
2

≤ δ̄2

2
,

with δ̄ = max{(i,j)∈E} δ̄ij . This implies that the difference

Vx(t+ 1)− Vx(t) can be bounded by:

Vx(t+ 1)− Vx(t) ≤ −
(
xi(t)− xj(t)

)2

2
+

δ̄2

2
. (11)

Therefore the component Vx(t) of V (t) is decreasing if

δ̄2 ≤
(
xi(t) − xj(t)

)2
when agents i and j perform a local

update. The same reasoning with an equivalent result can be

applied to the term Vy(t+ 1)− Vy(t). Therefore:

V (t+1)−V (t) ≤ − (xi(t)− xj(t))
2

2
− (yi(t)− yj(t))

2

2
+ δ̄2.

Then, the following inequality is obtained:

2 δ̄2 ≤
(
xi(t)− xj(t)

)2
+
(
yi(t)− yj(t)

)2
, ∀(i, j) ∈ E.

Thus, V (t) is decreasing when agents i and j perform a local

update if δ̄
√
2 ≤ ‖si − sj‖. After a sufficient number of

iterations, it holds:

max
i,j∈V

‖si(t)− sj(t)‖ ≤ d(G) δ̄
√
2, (12)

where d(G) is the diameter of the graph G. This is due to

the fact that for any pair of agents i, j ∈ V linked by a path

pij = {i, k, m, . . . , h, j} with |pij | = p, it holds:

‖si(t)− sj(t)‖ = ‖si − sk + sk − . . .− sh + sh − sj‖
≤ ‖si(t)− sk(t)‖+ ‖sk(t)− sm(t)‖+ . . .

+‖sh(t)− sj(t)‖ ≤ p δ̄
√
2,

Therefore, the inequality given in eq. (12) follows from the

fact that d(G) is the longest among the shortest paths between

any pair of agents. Furthermore, from eq. (12) it holds:
∥∥∥si(t)−

∑n

j=1
sj(t)
n

∥∥∥ = 1
n

∥∥∥n si(t)−
∑n

j=1 sj(t)
∥∥∥

≤ 1
n

∑n

j=1 ‖si(t)− sj(t)‖
≤ d(G) δ̄

√
2, ∀ i ∈ V.

Finally, let us recall that according to Lemma 2 the average

of the agents estimates is preserved over time. Thus, it holds

‖si(t)− s̄‖ ≤ d(G) δ̄
√
2, ∀ i ∈ V, proving the statement.


