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Abstract—This works focus on the extension of the Trans- subsystem, is thus more suitable. Each agent holds its own
ferable Belief Model (TBM) to a multi-agent distributed context  partial domain knowledge, accesses some external infamat
where no central aggregation unit is available and thg infomation source and consumes some computational resource. Bayesian
can be exchanged only locally among agents. In this framewky . . - N
agents are assumed to be independent reliable sources whichN,etV,VOrks represgnt a possible way of |mp|§mentlng this YIEW
collect data and collaborate to reach a common knowledge abo ~ Within the Bayesian Framework. A Bayesian Networks is a
an event of interest. Two different scenarios are considete in  directed acyclic graph where nodes represent variablethand
the first one agents are supposed to provide observations wii  graph represents conditional independence relations githen
do not change over time (static scenario), while in the secdn ariaples. The reader is referred to [7] for further details
one agents are assumed to dynamically gather data over time - .

(dynamic scenario). A protocol for distributed data aggregtion, The Theory of Evidence introduced by Arthur P. Qempster
which is proved to converge to the basic belief assignment @) and Glenn Shafer (DS) represents a valid alternative to the
given by an equivalent centralized aggregation schema bas@n Bayesian framework [8]. The main difference concerns the
the TBM, is provided. Since multi-agent systems representra \ay in which the ignorance is handled: in the probabilistic
ideal abstraction of actual networks of mobile robots or sesor .o mework the uncertainty is treated by splitting the antoun

nodes, that are envisioned to perform the most various kind b - . ;
tasks, we believe the proposed protocol paves the way to theOf credibility among plausible events, in the DS framework

application of the TBM in important engineering fields such s @ belief is assigned to the set describing all the plausible
multi-robot systems or sensor networks, where the distribted hypotheses without supporting any in particular. Sevemaks

collaboration among players is a critical and yet crucial apect. can be found in the literature providing a comparison betwee
Index Terms—Transferable Belief Model, Distributed Algo- these two frameworks [9], [10], [11], [12]. Depending on the
rithms, Multi-Agent Systems specific application, one framework can be more adequaite tha
the other [13].
The DS framework was further extended by the Trans-
ferable Belief Model (TBM) introduced by Philippe Smets
Data fusion is a research area that is growing rapidfy4]. In particular, TBM introduces the idea of open word
due to the fact that it provides means for combining piecegsumption in the DS framework. This implies the set of
of information coming from different sources/sensors. As [ypotheses not to be exhaustive, therefore information can
result, an enhanced overall system performance, i.e.ovepr pe contradictory. Indeed, the concept of contradiction is a
decision making, increased detection capabilities, dshied powerful tool to detect cases where information fusion has
number of false alarms, improved reliability, with respézt o pe considered unreliable, case that is not considerelkin t
separate sensors/sources can be achieved [1]. Bayesian technique. The main limitation of this framew®k i
Indeed, data fusion techniques play an important role jfe computational complexity, which grows exponentiallghw
the context of multi-agent systems where information c@nintespect to the number of elements. To overcome this draw-
from different sources must be aggregated in order to peovigack, several approximation techniques have been proposed
a meaningful description of the surrounding environmehe T [15], [16]. However, in case a minimal number of events is
majority of works available in the literature are based o@ thenough to model the problem, the TBM approach has been
Bayesian framework, where the aggregation is achieved Bifectively used, e.g, in diagnostic applications [17] madet
applying the Bayes rule. The most representative exampntification [18].
is the Kalman Filter, where noisy data is assumed to be|n this paper the data aggregation problem for a multi-agent
described by means of a Gaussian probability distribut&)n [ system is investigated. A multi-agent system represents an
Nevertheless, several works have been proposed to deal vigflal abstraction of actual networks of mobile robots orssen
the multi-agent data fusion in a Bayesian framework [3], [4hodes that are envisioned to perform the most various kind of
[3], [6]. Indeed, as suggested in [3], the single-agentqigra tasks. In the last decade networked multi-agent systems hav
might be inadequate when uncertain reasoning is perform@éwn the attention of a large part of the research community
by entities of a system between which there is some distanpgg], [20], [21], [22]. The motivation behind the interest
either spatial, temporal or semantic. For these systemsijta m on multi-agent systems is that a multi-agent approach ffer
agent view, where each agent is an autonomous intellige{eral advantages such as a larger range of task domains or
_ __a higher robustness and flexibility [23]. On the other hand,
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performance depends significantly on issues arising froen thllows to model the decaying of the source reliability over
complex interactions among the agents [24]. In this work, wibe time: this model is a useful representation when dynamic
attempt to answer to the following question: Is there a way &ystems are taken into account. In [28], a framework fortfaul
extend the TBM framework to a distributed context where ndiagnosis is described. In particular the Dynamic Evidanti
central aggregation unit is available and the informati@mise Reasoning (DER) is presented: it allows to model a system
exchanged only locally? Indeed, being able to answer suclby a set of attributes. These attributes, whose origin can
guestion would make it possible to effectively apply the TBNbe heterogeneous, are weighted by discounting factors and
in important engineering fields such as multi-robot systems merged in order to provide a one-step forward estimate about
sensor networks, where the distributed collaborationsregmathe fault-state of the system. The evolution of the systdiase
players is a critical and yet crucial aspect. In this framdyo on the Markovian decay assumption which allows to cope
agents are assumed to be independent reliable sources whith dynamical system faults. In order to properly set the
collect data and collaborate to reach a common knowledgsitial attributes and the related importance into the nhode
Two different scenarios are considered, in the first one tsgean optimization process over a training data-set is exgdoit
are supposed to provide observations which do not charge dedicated optimization tools. The framework fits well in
over time (static scenario), while in the second one agenime-varying examples like two-tanks system and gyroscope
are assumed to dynamically gather data over time (dynamdiability.
scenario). A protocol for distributed data aggregationohi Compared to these contributions, our work is mainly fo-
is proved to converge to the basic belief assignment (BBA&used on the networking aspects concerning the data aggre-
given by a centralized aggregation based on the Transteratphtion rather than the interpretation of the data itself.rélo
Belief Model (TBM) conjunctive rule is provided. specifically, our main contribution is the development and
Some works can be found in the literature discussing eithitie theoretical characterization of a distributed protdioo
static and dynamic aggregation, [25], [26], [27], [28]. BB], data aggregation within the TBM framework in a multi-agent
the problem of sensors reliability estimation is addres3ée@ context.
idea is to introduce a metric distance between the sensor
readings and the reality. This allows to tune the discogntin 1.
factor belonging to each sensor in order to minimize the ) ) ) )
distance itself. Both cases where the training data settes-de 1h€ Theory of Evidence is a formalism which can be
ministic or prone to uncertainties are considered. ReggrdiuSed for modeling uncertainty instead of classical priigbi
the uncertainties scenario, an elegant comparison betwddlgory of Evidence embraces the familiar idea of using a
standard (Bayesian) classifier and the proposed approaciygber between zero and one to indicate the degree of
shown. Furthermore, an extension to data-fusion is pravid&onfidence for a proposition on the basis of the available
in this case, an optimization process, to find out which Rvidence.
the optimal discounting distribution among the sources, isLet{2={wi, ..., w,} be afinite set of possible values of a
adopted by considering the pignistic probability achiesétdr Variablew, where the elements; are assumed to be mutually
applying the conjunctive rule on the observed belief assigBxclusive. Letl'(2) =29 = {y,..., |} be the power set
ments. In [26], the authors propose a novel framework fgesociated to it. In this framework, the interest is focuised
evaluating sensor reliability by integrating prior and tedual guantifying the confidence of propositions of the form: “the
information. Differently from the previous case, where thifue value ofw is in ", with » € I'. The propositions of
knowledge about the training data set was expressed by melg#grest are therefore in one-to-one correspondence Wéh t
of pignistic probabilities, in this work this knowledge jssubset?, and the set of all propositi0n§ ofin'gerest corresponds
represented by means of belief functions. Consequently, 4@ the elements of’. The set() so defined, is referred to as
thors use a dissimilarity metric, namely the evidence dizta frame of discernments
which guarantees the respect of the mathematical progertieDefinition 1 (BBA): A functionm : 2% — [0,1] is called a
holding in the TBM framework. Relying on these assumptionBasic belief assignment if
analytical procedures allow to achieve discounting fexct®he .
proposed approach aims at finding an estimate of both data- Zm(%) =1 with m()
fusion quality and sensor reliability. In the latter casee t Yo €T
discounting factor is gathered using the Shapley entropyab Thus forv, € T, m(y,) is the part of confidence that
belief functions as an indicator. In [27], the authors cdasi supports exactlyy,, i.e. the fact that the true value afis in
uncertain data whose uncertainty is represented by beligf but due to the lack of further information, does not support
functions whose combination can be partially conflictual. lany strict subset of,,. The first condition reflects that the total
particular, the authors discuss the nature of the comloingti confidence has measure one and the second condition reflects
(conjunctive versus disjunctive, revision versus updgtitatic that the total confidence has measure one. Note 1ihat,)
versus dynamic data fusion), they argue about the need foaredm(y;) can be both equal to zero evemif(~y, U~;) # 0.
normalization, examine the possible origins of the cordlictFurther,m(-) is not monotone under inclusion, i.€, C
determine if a combination is justified and analyze margoes not implym(v,) < m(ys).
of the proposed solutions. Furthermore, the authors discidotice that the BBA represents the atomic information in the
the Markovian decaying assumptipra representation thattheory of evidence.

THEORY OFEVIDENCE
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The main criticism to Shafer formulation concerns the Let us now introduce a simple classification problem to
application of the Dempster-Shafer (DS) combination rlrie. explain the issues which arise from the straightforwardiapp
fact, whenever there is a strong conflict between sources todation of the TBM within a distributed context. In particyla
combined, the straightforward application of DS combioati the following assumptions are made for this scenario: 1) no
rule can produce a result in which certainty is assigned ¢entral unitis available for data aggregation, 2) commatii
the minority opinion [29]. A more refined approach is baseamong sensor nodes is limited to one-hop neighbors. Indeed,
on the Transferable Belief Model (TBM) proposed by Philipthese assumptions reflect the operational conditions fer th
Smets in [30]. The TBM theory, like the Shafer formulationmajority of multi-robot and sensor network applicationg][3
relies on the concept of basic belief assignment functiomn, H32], [33]. Furthermore, it should be noticed that we do not
removes the assumption of(()) = 0. This allows to omit the focus on problems related to the data interpretation such
normalization constant in the Dempster’s rule of comborati as the reliability problem addressed in [25]. Differentbyr

and conditioning. attention is towards the issues which arise from the exbansi
Definition 2 (Smets - operato® ): of the TBM within a distributed context where only local
In the TBM, the combination rule is, therefore, defined irsthicommunication is permitted and no central aggregation unit
way: is available.
Sij é8i®8j _ {(mi@)mj)(’Ya); Ya € I‘} 2) [ Set# [ Node 1] Node 2] Node 3 s1 ® s2 @ s3 |
[ 0 0 0 0.79
. {a} 0.2 0.8 0.1 0.066
where: {0} 05 0.1 0.85 0.1425
{a, b} 0.3 0.1 0.05 0.0015
mij(ya) £ (mi @ mi)(va) = > mi(w)m;(ve).  (3) ABLE |
- r_’]vavCV; Ya AN EXAMPLE OF CLASSIFICATION PROBLEM SENSOR NODESBBA.

Note that, for the sake of readability the notation
mi(Va) @ mj(va) 2 (m; @ m;)(7,) Will be used indiscrim-
inately in the rest of the paper. In the same way, the notati

Ssij’“ = 5105, & Sk will be used to compactly denote severg], supposed that the aggregated sensor readings provided
mets aggregations. i ) by the nodes on the classes are expressed by the BBAs
The fact thatm(0) > 0 can be explained in two ways: o = {mi(0), mi(a), mi(b), mi(a,b)} given in Table 1. In

the open world assumption and the quantified conflict. The i ar, et us assume each node to be equipped with some

open world assumption reflects the idea thamight not be  go5615 sch as a speed sensor, a volume sensor and so on.

exhaustive, i.e. it might not contain all the possibilitiesder The objective of the sensor network is to perform this

this interpretation, being the_ complement (_)ﬂ, the mass classification task by means of a distributed data fusioedbas
m(0) > 0 represent the modeling errors, that is the fact that thy

. . X : AR point-to-point communication over the network topology
truth might qot be contallned if. The segond |nte_rpretat|ondepicted in Figure 1. Let us now investigate the problems
of m(0) > 0 is that there is some underlying conflict bewVeeﬂrising from the application of the Smets combination rule.

the sources that are combined in order to produce the BRA 4 icyiar, let us suppose that notéirst collaborates with

. Hen_ce, the mass as_sgnedm((l)) represents the degreenode2 and successively sets up a collaboration with node
of conflict. In particular, it can be computed as follows:

3. At this point, a question arises: what happens if nade
collaborates again with nod¥ Let us further investigate this
mij(V)) =1- Z mz‘j(%) (4) situation g 9

As an example, similarly to the classification problem
roposed in [25], let us consider two different possiblesstes
g'f' targets, e.g., cars or trucks, that & = {a, b}. Let

'ya;él(é

IIl. PROBLEM SETTING

Fig. 1. Network topology.

Let us consider a network of agents described by an
undirected graply = {V, E}, whereV = {v; : i =1,...,n} In detail, when nodel collaborates with node, they
is the set of nodes (agents) adtl = {e;; = (vi,v;)} is perform a data fusion over their current BBAs, that is
the set of edges (connectivity) representing the poirgeioht  s1o = 51 ® s = {0.42, 0.42, 0.13, 0.03}. As a result, both
communication channel availability. Note that, since theplp nodes reach a new common knowledge about the class
is undirected, the existence of the edge (from node: to of the target. In the same way, when notlecollaborates
nodey) implies the existence of the edgg (from nodej to  with node 3, they perform a data fusion over their current
noded). Thus, no distinction will be made in the followingBBAs and reach a new (common) knowledge about the
betweene;; andej;. Moreover, we will refer ta\ (i) as the class of the target which classifies the target as a truck,
neighborhood of agent, namely the set of indices of thethat is s125 = s12 ® s3 = {0.79, 0.066, 0.1425, 0.0015}.
agents directly connected through an edge with agemt Indeed, this is the same knowledge o = s1 ® s2 ® s3)
this framework an agent can be of any kind, for instancethat would be reached in a centralized scenario (Table I).
mobile robot, a sensor node, a software agent or else. At this point, if nodel and node2 collaborate again, by



using the Smets combination rule, they would reach a new with ¢ the number of focal elements ariR¥ the set of
wrong knowledge which classifies the target as a car,namely all possible mass assignment vectors.
S12312 = S123 ® s12 = {0.91, 0.0606, 0.02865, 0.00015}), « ¢ is the edge selection process that specifies which edge
where the information due to the first communication among e;; € E(t) is selected at time.
the two nodes would be considered twice. Therefore, the
Smets operator cannot be used in a distributed context as ttiB
result of the target classification depends upon the péaticu
sequence of selected edges. Indeed, a different comhinatio
strategy must be designed in order to overcome this liritati -~ Algorithm 1: Gossip Algorithm

The key idea of this work is that the current knowledge 0T pata: r — 0, 5,(0) Vi=1,...,n.
a node can be split with respect to any of its neighbors in twoResult s;(tsi0p) Yi=1,...,n.
parts. The first represents the portion of information sthare "
by the current BBAs of the two nodes, while the second is while ftog—;ggfgﬁr;ﬂcg’eij € B(t) according toe.
the novel portion of information brought by the BBA of each . Update the states of the selected agents appifing
node w.r.t. another one. As a result, this issue can be simply
overcome by restricting the aggregation among nodes to the Si_(t) @ S?(t)

. . . . s;(t) @ si(t)
novel portion of information, and then combining the obéain !
result with the shared knowledge. In this way, the result of
their previous aggregation is not considered twice by nbde
and 2 in the next collaboration. A formalization of this idea
s ErOVidEd in ]Eher:irst part of thﬁ Paper. d icall Now follows the definition ofS andR:
et us now further suppose that an agent can dynamica _—

collect new observationFs)pover time. Asga conseqﬁence, thﬁ:)eflnmon 3 (5): Let S(t) — {Sl(t)’_""S”(t>} be the_ .
following question arises: what happens if some agentstepd et of the_ agents states defined with respect to a finite
their observations while performing the data aggregatiofd M€ Of discernmenf) = {Wl"rl' o> wm}, Where s(t) =
Indeed, the protocol must take into account the fact thaideno mi_(t’%)’ Ya € I'}, 5:(t) € R is the set of basic belief
might update its observation. To this end, a proper extensio aSS|_gnme_nt (BBA) of agent over the power_seF(Q) _at
the proposed distributed data aggregation protocol tocovee a given timet - N. N(_)te that, in the folloyvm_g the t'me
this limitation is discussed in the second part of the paper.dependence will be omitted for sake of clarity if not styct

From an algorithmic point of view, a possible implementa-
R of the gossip algorithm is given in Algorithm 1.

Si(t + 1)
Sj(t + 1)

o Lett=t+1.

required.
IV. DISTRIBUTED DATA AGGREGATIONVIA NETWORKED Let us now introduce the binary operator which is useful
TBM - STATIC SCENARIO to break up any set of basic belief assignment with respect to

any other one.

In this section, a local interaction rufR to perform the . . .
Lemmal: Let us consider two sets of basic belief as-

distributed TBM data aggregation within a multi-agent syst
is described. In particular, each agent is supposed to geovFignNMents (BBA) s, = {mk(%)§ Ve € _F}, and
the same observation over time. Furthermore, the followirfg = 17%(7a);  V7a € I} for which the following holds:
assumptions on the network of agents are made: sk = 5i ® s;. It can be defined an operatay:
Assumptionsl:
« The network can be described by a connected undirected 5L s @s = s (5)
graphg = {V,£}.
o The communication range is limited by a maximu
communication radius.
o The communication among agents is asynchrongos;
sip like [34].
« A distributed algorithm to build a spanning tree Mk (Ya) = 2 5 0o = 5o M5 (W) (7e)
T ={V,E} with E C E is available to the agents, for m;(Ya) = AN , (6)
example by using [35], [36]. 2 ao Mi(0)

o Agents are capable to handle the storage of a proper set ) . .
of data. by starting from the element of the power-set with highest

In the proposed framework the interaction among agen(ig:g:zz:::yﬁémuzl {tg}éﬁgdin;o{whg d_C)V‘\[/gF}C) t?e_ellements}wnh
can be formally modeled by means of a gossip algorithm [32. Y €q LS T AW, B e R
. . . i ith Y1 = 0.
is defined as a triplefS, R, ¢} where: ) ) _

. - Proof: The proof is a simple consequence of the appli-
e S = {s1,...,8,} is the set containing the local state __. ;
. cation of Smets operat@®. Let us assume; can be written
s; € R? of each agent in the network.

« R is the local interaction ruled binary operator) that, as the Smets aggregation gfands;:
for any couple of agent§, j) with e;; € E, gives:

R: RIxRI— R Ské5i®sa‘:{(mi®mg‘)(%); Vi € F}

m .
In particular, each element of, = {m;(7.); Vv, € I'},
can be computed recursively as follows:




where: Regarding the knowledge decomposition (operatprand
N _ _ _ _ local aggregation rule (operatey) proposed in this work, a
mi(va) = (M @my)(va) QZ_ mi() -7 (ve) similarity can be noticed with the concept Bfempsterian
T e e Specialization Matrixdescribed in [37] and its application
= mi(r) >, miw)+ >, mi(w)mi() to the combination of distinct pieces of evidence. In this
Ya S %ﬂvjc:va work, Smets presents a tentative definition of the concept
Yo Ya

of distinctness for two pieces of evidence. To this end, by
assuming two BBAss 4 andsp to be two updating of a third
BBA sg, Smets provides a technique, based on the concept
of specialization matrix, to decompose the knowledge;
resulting from the combination of these two BBAss(and
Z%c% mi(yp) sp). In particular, by noticing that such a decomposition take
- . ] into account the BBAsy, Smets argues that the two BBAs

Therefore,s; = {mj(va); Vv.€T}is obtained. M andsy can be considered distinct only if the BB4 is

Let us now introduce the operat® which is used in the a0 0us, i.e.mo(Q) = 1. Although the focus of the work
static scenario to perform the local aggregation among tBF‘oposed by Smets is completely different, from a concéptua
agents. perspective, there is a similarity between the notion ofefigv

Definition 4 (R - operator® ): _ _ and common knowledge adopted in our work, and the key
Let R be a rule to combine the basic belief assignments f@lements involved in the knowledge decomposition proposed

two agents(i, j) such thate;; € £. This rule can be defined py smets. The reader is referred to [37] for further details.
from the agent standpoint (specularly for agejf as follows: At this point, in order to prove the convergence of the

At this point, by collecting with respect ta;(,) the follow-
ing expression is obtained:

my (7‘1) - Z Yo N Ye = Ya m] (/yb)mi (’70)
Yo O Ya

m; (’Ya) =

si(t+1) = si(t) Ds;(t) proposed algorithm, some properties concerning the local
_ { (fnf (t,Ya) ® m; (t,'ya)) ® mij(t,Va): interaction ruleR must.be introduced.. _
' Lemma?2 (R properties): The local interaction rul&k de-
V% € F}, fined according to eq. (7) has the following properties:
)
with ® the Smets operator. Let us denote Wigh(t) = 5i D 5; = 55 @ si o (c_cc;mmutativit))
{m{(t%); Vv, € I'} the novelty of the agent with 5i @ 85 - si i 5;=s (idempotenck
. . (si®sj)Dsy = s D(s;Dsk) (associativity
respect to the agent, which can be computed recursively (10)
as follows: ‘ for each triple(i, j, k) : eij, ej1 € E.
Mt Ya) = D vy (1 ye = 7o 10 (B 76) 04,5 (E,7e) Proof: The properties can be proven by applying the
il (t,7a) = T 2 Ya definition given in eq. (7).

Z «C mz}j(tv'}/b)

YaCb ®)
and 5,;(t) = {mi;(t,7.); V1. € T} (or equivalently
5;4(t)) is the common knowledge, i.e., the knowledge stored
by both agents after their last aggregation, set to the aleutr
elementn = {0,0 ..., 0, 1} of the TBM conjunctive rule
before their first aggregation.

Note that, as a consequence of Lemma 1, for a given agent
1 the following relation holds between the novelty and the
common knowledge with any other agent .

silt) mi(t ) Vi €T} = 50 ®5i5(t)
] (t,7a) @ Mij(t70); Vra € F}

Furthermore, for any couple of agents j), the related
statess; ands; are equal if and only if they are completely e
described by their common knowledge, ise= s; = 5; ;.

Remark1: A few important remarks are now in order:

1) In order to apply the local interaction rulg, an agent
must have stored all the most recent collaborations with its
neighbors, that iS{si Ds;; JE N(z’)}.

2) As only information concerning collaborations among (
hop) neighbors are required, the algorithm is fully disitézl
and scalable in terms of memory requirement with respect to
the size of the network.

9)

o Commutativity:

Let us consider two agents, j), then from Definition 4
we have:

S @ S5 = (§Z ® 53) ® gi,j = (5; ® 53) ® Ej,i =Sy @ S
where (51- ®35;) = (éj ) 51-) comes from the commu-
tativity property of the Smets operat® ands; ; = 5;;
by definition.

Idempotence:

Let us consider two agents, j) for whichs; = s; = 5, ;
at a given timet, then we have:

S; @Sj = (5{ ®§;) ®§i,j = (n®n) ®§i,j = gi,j = S;

Associativity:
Let us consider a triplet of agents, j, k) such that
eij, ejx € F, then we have:

(Si &) Sj) D sk = 5ij D s = &#&® 5 @ sijk
= Sij X® 5? = 55 &® S5 ® 5?
=38 ®s; 05 = & Qs
=" = #'® 851, ® Bijok
= 5 D sjk = 5@ (Sj@sk)



where the equivalent relation§/ = 5 and 3/ = 5/*  Theorem1 (Distributed TBM):Let us consider a gossip
come from the independence of knowledge betweeatgorithm {S, R, ¢} over a spanning-treg = {V, E} with
nodesi and k& with respect toj, due to the properties S and R defined respectively as in Definition 3 and Defini-
of the topology structure of the communication graphion 4. Let us assume each ageérdt time & 0 provides an
i.e., a spanning-treg . independent set of observations described by the basiefbeli

: _ . assignments; (0) = {m;(0,7,); v« € T'}. If ¢ is such that
So far, we have introduced a local interaction rill@and we ,, "5 A, € N so that the time-variant foregk(t, ¢ + At) is

have_described its properties. In the_followin_g, it will Um_wn connected, then there will exist a time= 7 so that:
that if the agents apply the gossip algorithm described In
Sec. lll with such a local interaction rufe over the spanning- 5i(t') =51(0) ®5200)®...Qs,(0) V' >t (13)

tree 7, they converge toward a common BBA. In particular, . . . .
it will be shown that such a BBA is the same as in the cagaat is, each agentconverges toward the same BBA as in the
entralized aggregation schema given in Definition 5.

of a centralized aggregation based on TBM conjunctive rufé Proof: The proof of the theorem consists of three steps.

[30]. . o .
Definition 5 (Centralized TBM):Let us consider a systemF'rSt’ it wil bg proven that a steady-statg e?('StS for the
proposed gossip algorithm. Successively, it will be proven

of n agents (sources) where each agegmtovides an indepen- that h laorithm al i dast ¢
dent set of observations at tinte= 0 described by the basic at such an algoriinm aiways converges toward a s eadiy.—s a
Finally, it will be proven that the steady-state is unique #n

belief assignment; (0) = {m;(0,7,); v« € T'}. A centralized . ) .
aggregation schema would provide the following aggregat?dthe same as the result of the centralized aggregatiomsche

BBA: given in eq. (11). _ .
s1o S ®59®...®s (11) 1) Steady-State Existencén order to prove the existence
o " of a steady-state for the proposed gossip algorithm, it bell
Let us now introduce the concept of a time-dependent foregfown that a sufficient and necessary condition is that all th
F(t,t+A) with respect to a given treg over time as follows: agents share the same stateln fact, if all the agents have
Definition 6: Let us defineF(t,t + At) = {V,E(t,t + the same state, according to the interaction rule given in
At)}, with B(t,t + At) = 27" e(2) ande(z) € E, as the eq. (7), they will always send the neutral elemenfor any
forest resulting from the union of all the edges given by th@rther aggregation. Therefore, the statés itself a steady
edge selection process over the getfrom time ¢ to time state for the multi-agent system. Furthermore, let us prove
t + At. Obviously, if the edge processis such that in the by contradiction this condition to be necessary as well. To
time interval(t, t + At) the forestF(¢,¢ + At) is connected, this end, let us consider a spanning-tréecomputed by
then the spanning treg is obtained. the agents in a distributed fashion. Now, let us suppose two
In order to prove the main result of the paper, a usefgyents; andj have reached two different steady states over
relationship between the Smets opera@iand the proposed the network, that iss;(t) = s’ and s;(t) = s”. Therefore,
interaction rule® is now introduced. according to the definition of a spanning-tree, there will
Lemma3: Let us consider three agents j, k) such that ajways exist a (unique) path connecting the two nodes
eij, ik € B with their observations;(0), s;(0), s,(0) attime and j. Let us now consider for such a spanning-tfEehe
t = 0. The following holds: pathp;; = {vi, Vkens - - - Vnen;, v;} connecting these two
5(0) ® 5;(0) ® sx(0) = 5:(0) ® ;(0) B sx(0) (12) a/ge_ntsi andj. In particular, as agenthas reached the state
) . ', its neighbork will always send to it the neutral element
_ Proof: The lemma can be proven by applying the defini; g novelty for any further aggregation. This implies that,
tion given in eq. (7) along with the properties given in eq: (9the agent: must have reached itself the same steady state
5:(0) @ 5;(0) @ sx(0) = (si(O) D sj(())) @ 51,(0) and be receiving the neutral elemenby iFs neighbors. The
_ same argument can be applied to the ageand its neighbor
(§§ 0)® §§(O) ® §i7j(0)) @ si(0) h with respect to the steady staté. Now, by iterating this

(51 @50 @n) @ si(0)

wheres (0) ® 54(0) ® 5;,;(0) = 5;(0) ® s5;(0) @ n is due to
the independence of the agents observation. Now, by defining
5-(0) = 5,(0) ® s;(0), it follows that:
s:(0) @ si(0) = 35(0) ® 5(0) ® 5..4(0)
= 5.(0)®s,(0)®@n
5i(0) ® 5;(0) ® s(0)

B Fig. 3. Novelty contraction over the spanning tfEat different time-interval.
Let us now introduce the main result of the paper, that is the
convergence of the proposed gossip algorithm towards the baasoning from both ends of the path there will be a cut where
sic belief assignment (BBA) as in the centralized aggregatiall the nodes on a side will have reached the same steady-
schema given in Definition 5. states’ as agent, while on the other side all the agents will



Fig. 2. Steady-state convergence over the spanning7ireg¢ different time-interval: a) after the first interval ot during which the tred is obtained,
the related leaves will send only the neutral element by @teertain amount of time the root 6f achieve the steady stagec) Finally the steady state is
spread over the whole net

have reached the same steady-stdtas agentj, as shown in 5 as the agent (Figure 2-c). Therefore, according to the proof
Figure 3. Let us calk: andy the two agents on the boundarie®f existences is a steady state for the multi-agent system.

of the cut. Sincez andy have both reached a steady state, 3) Steady-State Uniquenesisi order to prove the unique-
ands” respectively, they must be sending the neutral elememgss of the steady state, it will be shown that any sequence of
n as novelty to each other. However, the two steady stat@ggregations over the network, where each agent is coesider
s’ and s” have been supposed to be different, therefore the least once, is always the combination of the initial set of
two agentsr andy cannotbe sending the neutral element observations, that is:

to each other. Indeed, this would be possible only if the two

steady states’ and s’ were the same steady statewhich 5(t) = 51(0) D 52(0) @ ... B 5(0).

gives the absurd. Therefore a steady state holds if and bnlyl-'hiS can be proven by recalling the properties given in

si=sj Vi,jEN. Lemma 2. In fact, the particular sequence of aggregatioas do

2) Steady-State Convergenckn order to prove the Con- ¢ affect the result due to the commutativity and assadigti
vergence of the proposed algorithm towards a steady-staif,nerties, while the presence of several occurrenceseof th
let us consider a spanning tré€ computed by the agentsg,me state can be neglected due to the idempotence property.
in a distributed fashion over the network topology as ag 3 result, the combination of the initial set of observagio

shown in Figure 2 Now, let us consider an _interval of timgy achieved. At this point, by exploiting the result given in
[to, to-+Alo] for which the forestF (o, 1o +Ato) is connected. | eyyma 3, the following holds:

This implies that some agents play the role of leaves for the

resulting spanning-tre@. According to the definition of the 5(t) = 51(0) D s2(0) D ... D sn(0)

Io_caI interaction rule given in eq. (7), (at _Ieast) thesendge = 51(0)®52(0) @ ...® 5,(0).

will always send the neutral elemento their fathers for any

further aggregation (Figure 2-a). Now, let us consider a nelus proving the theorem. Details concerning the algorithm
interval of time[t;, t; + At;] with t; = to + Ato + 1. We execution are provided in Section V. [ ]

can use the same argument with respect to a new spanning-et us now provide a characterization of the convergence
tree 7' obtained by removing the leaves from the origindime with respect to a given edge selection proaess
spanning-tree7. In fact, there are some other agents which Lemma4 (Convergence Time)Let us consider an edge
play the role of leaves for the new spanning-t7€en the time selection process such thatvt 3 At € N, so that the forest
interval [t1, t; + Aty]. This implies again that (at least) theseF (¢,¢ + At) is connected. I3M € N : At < M Vi,
agents will always send the neutral elemerfor any further then the convergence is reached by any agent at most at time
aggregation to their fathers. At this point, since the numbé= d - M, whered is the diameter of the spanning trge

of agents is finite, by repeating this reasoning it will exast Proof: The proof of the lemma follows the same argu-
interval [t},, t5, + Aty] after which the residual spanning treements of the steady-state convergence proof (Section 1V-2)
T" will be composed of only one agentwhose statg is the by assuming that an upper bound is available to the time
aggregation of all the observations available over the agtw required for the forest to be connected. In particular, fikes
(Figure 2-b). Let us now consider, a new spanning ffée!  of simplicity and with no lack of generality let us assume to
composed of such an agenand all of its one-hop neighbors.start at timet = 0. Under this assumption, the information
There will exist an intervalt, 1, tn+1 + Atyy1] after which contraction process towards a single agendescribed in

the forestF (t,+1, th+1+Atn+1) is connected. As a result, all Section IV-2 takes in the worst case, i.e., the leaves are the
the agents belonging to this spanning tree will have reachledt agents to perform an aggregation, tithe= (d/2)- M. In

the same knowledge as the ageénfThis is due to the fact, the same way, the information propagation process from such
that agenti will be the only one to send a novelty differentan agent to all the other agents over the network described
from n, and therefore any aggregation will let the other agenits Section 1V-2 takes in the worst case, i.e., one of the Isave
reach its states. By iterating the same reasoning, there wilbf the previous spanning-tree is the last agent to perform an
be an interval of timéts;,, ta, + Atay] for which the related aggregation, time, = (d/2) - M. Therefore, the overall time
spanning treg 2" will coincide with the original spanning tree required to the algorithm to converge in the worst case saena
T. At this point, all the agents will have reached the samestas ¢t = t1 +to = d - M. [ |



As far as the computational complexity of the proposedwards the same knowledge about the class of targets as for
algorithm is concerned, from the single agent perspeaaelh the centralized aggregation schema. Thus each agent tprrec
time an aggregation is performed the following operaticaseh classifies the target as a truck.
to be carried out: 1) Novelty extraction, 2) BBAs aggregatio Note that, as pointed out in Section lll, the straightfordvar
Since, these two operations have the same computatioapplication of the Smets operator would lead to a wrong targe
complexity, the first being the inverse of the second, asqmovclassification, i.e., different from the centralized oneegi
in Lemma (1), the asymptotic computational complexity ah Definition 5, if the edge selection process described in
the interaction ruleR is of the same order as for the Smet§able IV were considered. This is due to the fact that stgrtin
aggregation. Regarding the memory occupancy, each agkan time¢ = 5 agents are required to collaborate more than
should be able to store the common BBA for each of isnce, thus the information brought by these nodes would be
neighbors. Thus in the worst-case scenario, that is a nagteoneously considered several times. This can be viewed by
linked to each other one, the memory requirement is of tlkemparing the last two columns of Tables IX, X, XI, XII, XIll,

order of the number of agents where the result of the aggregation for both the proposeal loc
interaction rule and the Smets operator are given.
V. NETWORKED TBM - STATIC SCENARIO: AN EXAMPLE Regarding the memory load, by assuming each mass can

be represent with a double (4 bytes in our representa-

In the following, the classification problem introduced irfion) the memory occupancy for each agent is equal to
Section Il is reviewed. Two possible classes of targetg, 2 x 8 = 64 bytes, where is the maximum number of

e.g.,_“cars” or *trucks” ("a” or b in the follo_wing), ar€ neighbors in the spanning-tré€ and s is the cardinality of
considered. Hence the following frame of discernment e power-sef’

defined2 = {a, b} and the following power-set is obtained,
I' = {0, a, b, {a, b}}. The classification task is supposed to be [ Set# [ Agent 1 [ Agent 2 | Agent 3 | Agent 4 | Agent5 |

carried out by a system composedsadigents. The aggregated 0 0 0 0 0 0
sensor readings provided by the agents on the classes are {a} 0.1 0.2 0.1 0.2 0.3
expressed by the BBAs detailed in Table II. ib%} 8:? 8:1 8:? 8:1 8:‘31

Table Ill depicts the result of the centralized aggregation TABLE I
schema detailed in Definition 5. In particular, according t0  §gsERVATIONS COLLEGTED BY THE SYSTEM OFS AGENTS.
the knowledge about the class of targets obtained, therayste
classifies the target as a truck.
Let us now consider the distributed TBM aggregatioft Set # [ Agent 12 [ Agent 123 [ Agent 1234 | Agent 12345][ C-TBM |

schema described in Section IV. Figure 4 depicts the mulfi- 0.23 0.341 0.4781 0.63499 || 0.63499

agent system where the solid (black) lines describes theta} 0.05 0.011 0.0035 0.00213 || 0.00213
. . 0.71 0.647 0.5183 0.36285 | 0.36285

network topologyg, while the dashed (red) lines represents;; 3, | ooz 0.001 0.0001 0.00003 || 000003

the spanning tre§ computed in a distributed fashion by the TABLE Il

agents. CENTRALIZED TBM: FINAL RESULT AND PROGRESSIVE AGGREGATION

Tme | t=1 | t=2 | t=3 | t=4 | t=5 | t=6 | t=7 | t=8 | t=9
Edge | e12 | e13 | e2qa | e35 [ e12 | e13 [ e12 | e35 | e2s

TABLE IV
EDGE SELECTION PROCESS

Fig. 4. Multi-Agent system: solid (black) lines represehe tnetwork
topology G, dashed (red) lines describe the spanning ffee

[ Set# [Agent1] 512 [ 512 [ Agent2 | s1 @ s2 |

Table IV describes the adopted edge sequence as output of 7] 0 0 0 0 0.23
the selection process. Note that, only collaborations amon {a} 0.1 0 0.1 0.2 0.05
agents which augment their common knowledge, i.e., the {0} 0.8 0 |08 ] 07 0.71

) {a, b} 0.1 1 | 01 0.1 0.01
novelty is not the neutral element at least for one of the
two agents, have been considered. This allows the system TABLE V

. . . DISTRIBUTEDTBM: T=1,s s
to converge after only® steps which is significantly lower 1@ 52

compared to the upper bound provided in Lemma 4 where
d = M = 4. This can be explained by the fact that while

| Set # | Agent1| 51,3 | §173 | Agent 3 || s1 @ s3 |

the upper bound has been obtained considering the worst-cas 7 023 0T 023 o 0341
scenario, the numerical example presents an optimized edge Tat 0.05 0 1005 01 0.011
selection process, i.e., for each collaboration at least @n {b} 0.71 0 [o071 0.8 0.647
the two agents augments its knowledge. {a, b} | 001 | 1 [0O01] 01 0.001

Tables Xl, Xll, Xl show the result of the distributed data TABLE VI
aggregation process based upon the local interaction ivee g DISTRIBUTEDTBM: T=2, 51 @ s3
in Theorem 1. In particular, the multi-agent system conesrg



[ Set# [ Agent 2] 524 [ 52,4 | Agent4 | s2 B sa |

[ 0.23 0 ]023 0 0.407 As_sumptlonSZ: :
Tal 005 0T 005 07 0017 In th|s_ fra_mework,_ each age_lz'ltcan handle the storing of the
Y 0.71 0 [ 071 07 0575 following information up to timet:
{a, b} | 0.01 1 | 00I| 01 0.001 « s;(t) current knowledge;
TABLE VI « 5, ,(t) common knowledge with agerjtso thate;; € E;

DISTRIBUTEDTBM: T=3, 52 @ s4 « p;(t) BBA related to the previous observation;

« [;(t) BBA related to the latest observation;

Set# | Agent3 | 5 5 Agent 5 . . . .
3 R e g%gg For sake of clarity, the following notation will be used
{a} 0.011 0 |o0011| 03 0.0069 indiscriminately in the rest of the paper:
{0} 0647 | 0 | 0647 04 0.4533 -
Ta, 6] | 0001 | 1 |[0001| 03 0.0003 sc(t) =35ij(t)  ss(t) = si(t) ® s4(t)
TABLE VIl Definition 7 (Combination rules):In a dynamic scenario

DISTRIBUTEDTBM: T=4. 55 © 5 each agent can perform two type of data aggregation:

o Local Aggregation performed by a single agent.
« Dynamic Aggregation performed by a couple of agents.

| Set # | Agent 1 | 51,2 | ,svl?2 | Agent 2 || s1 @D s2 || s1 & so |
0 0.341 0.23 0 0.407 0.4781 0.626537
{a} 0.011 0.05| 0.1 0.017 0.0035 0.000215
{b} 0.647 0.71] 0.8 0.575 0.5183 0.373247 A. Local Aggreaation
{a, b} 0.001 0.01] 0.1 0.001 0.0001 0.000001 ' ggreg ) ) )
TABLE IX An agent requires a local aggregatlon any time a new

DISTRIBUTEDTBM: T=5, 51 @ s2 observation is available. To this end, let us suppose that th
initial observation is made at timé = 0 and a new one
[Set# [Ageni1] 515 | 515 | AGeni3 ] s1@ss [ s1i®@ss ] IS collected at timet,, k € _N._ In this context, an agent
] 04781 1 03411 0 0.5395 || 0632499 || 0.7385071] Mmust perform docal aggregationin order to remove the past
{a} 0.0035 | 0.011| 0.2 | 0.0069 || 0.00213 || 0.0001293| observation from its current knowledge and add the new one.
{b} | 0.5183 | 0.647 ] 0.7 | 0.4533 || 0.36285 || 0.2612733| Thjs can be achieved by first computing the novelty between
{a, b} | 0.0001 [ 0.001 | 0.1 | 0.0003 || 0.00003 || 0.0000003 ;
the current knowledge; and the past observatign and then
TABLE X aggregating this noveltg” with the latest observatiofy. In
DISTRIBUTEDTBM: T=6,s1 P s3 . ¢ .
this way, the updated current knowledge of the agent wik tak
(S g | T g s [ e SEeount ot e niomaton caming fon e pevious
[ 0.63499] 0.4781] 0 | 04781 || 0.63499 ] 0.84950 | " 9
{a} | 0.00213| 0.0035| 0.3 | 0.0035 || 0.00213 || 2.3-10© |IS: .

{b} | 0.36285| 0.5183 | 0.4 | 0.5183 || 0.36285 || 0.15049 si(ty) = 3% (tx) ® Li(tr) (14)
{a, b} | 0.00003] 0.0001| 0.3 | 0.0001 || 0.00003 || 3-10— 0

TABLE XI B. Dynamic Aggregation Between Agents

DISTRIBUTEDTBM: T=7,51 @D s2 . )
In order to perform the dynamic aggregation between two
[ Set# [Ageni3| s [ 5os [AGeniS [ @5 [ 5: 855 agent§ _the opera/to@ must beﬁlntroduced.
T ] 063499] 05395] 0 | 05395 || 063499 ]| 0931736 | Definition 8 (R - operator ): _
Ta} | 0.00213| 0.0069| 0.2 | 0.0069 || 0.00213 || 1.6-10-° |Let R’ be a rule to combine the basic belief assignments for
{b} | 0.36285] 04533 | 0.7 | 04533 || 0.36285 || 0.068263 |two agents(i, j) such thate;; € £ as follows:
{a, b} | 0.00003 | 0.0003 | 0.1 | 0.0003 || 0.00003 || 9 10~ 7
TABLE XII si(t+1) = si(H)BPsi(t) = (sit) @ s;(t))

DISTRIBUTEDTBM: T=8, 53 @D s5 B
= {mg(tvva)}a V% el

[ Set# | Agent2| sou | 524 | Agentd ] s2@sa || s2®@s1 | \wheresms(t, v,) is defined as in eq. (6) with respect 4o(t)
§ ] 0.63499] 0.407 ] 0.28 | 0.407 ]| 0.63499 || 0.913315

{a] [ 0.00213] 0.027 [ 0.09| 0.017 || 0.00213 [ 42 10—~ | andse(t). _ _
{o} 036285 | 06575 | 0.6 0575 0.36285 0.086684 Remark?2: A few remarks are now in order:

{a, b} | 0.00003] 0.001 | 0.03 | 0.001 [ 0.00003 ] 3-10- | 1) A simple consequence of Lemma 1 with respect to the
TABLE XllI operatord is that the aggregation of two statgands; such
DISTRIBUTED TBM: T=9, 52 @ s4 thats; = 5, ; is:

C

(15)

—_— (& —_—

53t +1) = (55(0) @ si(t) = (s5(0) @ (1) = si(2)

2) According to the operatak, two statess;(t) ands;(t) are
equal if and only if they are completely described by their

In this section a local interaction rul®’ to perform common knowledge, i.es;(t) = s;(t) = 5 ;(t) = s¢(1).
distributed TBM data aggregation, in case of dynamic obser-Therefore, the aggregation rule used for the dynamic sce-
vations, is described. The following assumption on theagfer nario turns out to be the same as in the static scenario if the
on the storing capabilities of an agent are made: agents do not collect new observations over time.

VI. DISTRIBUTED DATA AGGREGATIONVIA NETWORKED
TBM - DYNAMIC SCENARIO



At this point, in order to prove the convergence of th
proposed algorithm some properties concerning the local in
teraction ruleR’ must be introduced.

Lemma5 (& properties): The local interaction ruleb de-
fined according to eq. (7) has the following properties:

5i D s; = 5; D s (commutativity)
5 D s; = s; if 5,;,=s; (idempotence
(5iDs;)Bsr = 5D(s;Dsk) (associativity
(16)

for each triple(i, j, k) such thate;;, e;), € E.
Proof: The properties can be proven by exploiting the
Lemma 1 and the definition given in eq. (7). Furthermore,

10

i (bm) @ 55 (tm) ) @ st () =

(v7 tm) ® 03 (t0) ® v} (1) ® 5" ()
(07 () @ 7" (tm) ® () ) B s (tm)
= 5ij(tm) D sk (tm)

= (V] (tm) ® v (tm) @ v (ty) ® 5 (tm))

—
j

(tm) ® U;’k(tm) ® Ui (tq’) ® ’Ui, (tm) ® vJI‘C (tq/))
V! (tn) ® 0} (tm) @ Vi (tm)

"
c

let us consider the more general case for which agents might Where the equivalence;;, = 5;, comes from the

have already performed an aggregation with each other. In

particular, according to Lemma 1, the stateof an agent;
with respect to any of its neighboyscan be always written
as:

S (tm)

Li(tm) @ sarayj(tm) @ 1i(tg) @ sanilte)

independence of the knowledge between nodend k&
with respect toj, due to the properties of the topology
structure of the communication graph, i.e., a spanning
tree 7. And:

51 ) @ (55 t) B 5n(t))

—~ !’

o] (tm) ® v} (t4)

where spry ;i (tm), sarni(ty) describe respectively all the
aggregated data coming from the neighborhood of agent
(at time t¢,,) and j (at time ¢,) excluding each other, and

Uz(tk) = lh(tk) [%4) SN(h)\p(tk)- N . o

= 5iltm) B (V] (tg) ® v} (tm) ® v (1) ® V] (tm) ® v (t) )
5i(tm) @ (07 (t4) ® 0} (1) ® ] (m) )

« Commutativity: - (sl(tm) ® vl (tg) ® v (tm) @ v} (tm)
Let us consider two agents, j), then from Definition 8 o o
we have: - (vi (tm) ® Vi (tg) ® V3 (tg) ® V¥ (tm) & vl (tm ))

siésj = (Si X Sj) = (Sj X Si) = sjési = ’Uzj(tm) ® U;’k(tm) ® Ué(tm)

where (s; ® s;) = (s; ® s;) comes from the commuta-
tivity property of the Smets operat®.

« Idempotence:
Let us consider two agents, j) that a given time have
their BBA equal to their common knowledge (acquired
at a certain instant of time previous the tine that is
s;i = s; = 5;4, then we have

where the equivalencs, ;. = 5, ; comes again from the

independence of the knowledge between nodend k&

with respect toj, due to the properties of the topology

structure of the communication graph, i.e., a spanning

tree 7.

[ ]

In a dynamic scenario, referring to Definition (5), let us
assume that every so oftet = #,, k € N), one or
more agents perform an update of their observation. As a
consequence, the aggregated BBA can be updated accordingly
as follows:

- c ]
5iDsj=(5:®s;) =(5i®sj) =5
o Associativity:
Let us consider a triplet of agenis, j, k) such that

eijye;r € E. Furthermore, according to Lemma 1, let

us assume the current state of the three agents aft;’ilme where ll(fk) describes the BBA related to the most recent
to be written as follows: observation available to the agent

For the dynamic scenario, the convergence of the proposed

s12 () =l(Ee) @L2(tr) ® ... ® ln(tr) (17)

Si = v{(tm) Y U;(tq) gossip algorithm towards the basic belief assignment, #sein
5; = v{(tq) ® Li(tm) ® sy(inik(tm) @ U'/i(tq’) cr:antralized aggregation schema, is guaranteed by thevialip
g ik it theorem.
vi_(tq) ®© vjk (tm) ® i (t) Theorem2 (Distributed Dynamic TBM)Let us consider a
sk = U(tm) @ vj (ty) gossip algorithm{S, R’, ¢} over a spanning-tre® = {V, £’}

and the common knowledge describing previous aggr 1t?. ‘i and8RL dteﬁned respecuvel)r/] asm taDteft|_n|t|or::3 Oand
gation among these agents to be written as: efiniion ©. L€l us assume each ageniat ime .
. provides an independent observation described by the basic
5i;(tq) so = v (tg) @Vi(tg) belief assignment; (0) = {m;(0,74}, 7. € I'}. Furthermore,
_ j let us assume that every so oftén=(i,, k € N), one or more
Sj.,k(tq’) SC” = ’U;—C(tq/) ® ’Ui(tq/), y n:( k )
Then we have:

- agents perform an update of their observation.iff such that
V't JAteN so that the time-variant forest(t,t + At) is
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connected, then for somie there will exist a timet = ¢, so be possible only if the two steady stat€sand s” were the
that: same steady state which gives the absurd. Therefore a steady
- - - _ . state holds if and only it; =s; Vi,j € N.
si(t) = L(te) L (k) ®- .. @l (k) Y1 € [T, trer) (18) 2) Observations Pz)pagati(;nLet 35 consider two agents
wherel; (f;,) describes the most recent observation availab(é j) such that;; € F and let us assume a collaboration was
to the agent. performed at time = ¢,. The updated states can be written
Proof: The proof of the theorem consists of four stepsas:
First, it will be proven that a steady-state exists for the

proposed gossip algorithm. Successively, it will be shomat t si(ty) = L (tq) ® SN\ (tg) ® 1j(tg) ® sninilta)
each agent by applying the aggregation opergiaran inject = v (ty) ®Vj(ty)
the updated observations into the network while transylgren si(ty) = Li(te) ® saunilte) ® Lite) @ saiing(te)

removing the previous ones. Then, by exploiting this proper B
it will be proven the convergence and finally, it will be shown = vlt) ® vt q)’
that the steady-state is unique and equal to the result of thReres ;)\ ;(t,), saj)\i(tq) describe respectively all the ag-
centralized aggregation schema given in eq. (17). gregated data coming from the neighborhood of agemtd j
Note that, for the existence, convergence and uniquenesgluding each other, and; (tx) = ln(tr) ® SA )\ (tk)-
analysis, the interval of timéf,, ix11) between two con- Furthermore the common knowledge at tihe- ¢, between
secutive observations update is supposed to be long enough two agents can be written as(t,) = vi(t,) ® v](ty),
with respect to the nature of the edge selection proeessNow, let us consider a timeé = ¢,,, t,, such that the two
This allows to guarantee that each agent can perform all thgents have performed further aggregations (but not with ea
aggregations required to reach the steady-state. Negemsar other) and an update of their observation. Their curreré sta
sufficient conditions concerning the length of time intérvat timet¢ = ¢,, can be written as follows:
with respect to the edge selection procesare given in

Lemma 6. si(tm) = ( m) ® SN(Z)\J( m) @ Li(tg) ® sniinilte)
1) Steady-State Existencén order to prove the existence = ( m) ® ( )

of a steady-state for the proposed gossip algorithm, it vl s;(t — ® s ) ® Li(t) ® sarema(t

shown that a sufficient and necessary condition is that ell th (tm) JZ.( ) /\7/ @ilfm) (ta) Aa(ta)

agents share the same statéccording to the interaction rule = Vj(tm) @ vi(tq)-

given in eq. (7), this imply that all the agents will have th@yow, let us assume that the two agents perform an aggregation
same common knowledge.. Therefore, the state is itself gt time + = ¢,, + 1. Their current state can be updated
a steady state for the multi-agent system. Furthermoreisletaccordingly as follows:

prove by contradiction this condition to be necessary as. wel ~

To this end, let us suppose two agentsnd j have reached  Si(tm +1) = si(tn)®s;(tm)

two different steady states over the network, that;{g) = s’ g P j ¢
and s;(t) = s”. Therefore, according to the definition of a = (0l (tm) ®j(ts) ® v} (tm) @ v} (t4)

spanning-tree, there will always exist a (unique) path eatn = v (tm) ® Vi (tm)

ing thg two nodes and j. Let us now consider for such a 5i(tm +1) = 5;(tm)Bsi(tm)

spanning-treey” the pathp;; = {vi, vken;, ..., Vhen;, v;} . R ‘ c
connecting these two agentsand ;. In particular, as agenit = (V4(tm) ® v} (tg) ® v] (tm) ® Vi(ty))

has reached the statg this implies that its neighbadt must = Vi(tm) ® o (tm)

be sending a state which is equal to their common knowledge. ’ !

Furthermore, since agent itself has reached a steady-stateyhere the common knowledge.(t,) = vi(t,) ® v/ (ty),

agent; must be sending a state which is equal to their commavhich represents both their previous observatlons and thei

knowledge. However, according to the Remark 2 this impliggighbors previous observations, is removed. Note thtgr af

that both agents have the same state, that'.isThe same the aggregation the common knowledge is set to the current

argument can be applied to the aggnand its neighbor ~ state of the two agents.(t,, + 1) = v/ (tm) ® v} (tm).

with respect to the steady staté. Therefore, anytime two agents perform an aggregation only
Now, by iterating this reasoning from both ends of the pathe most recent observation of any agent is propagated over

there will be a cut where all the nodes on a side will havae network.

reached the same steady-stétas agent, while on the other ~ 3) Steady-State Convergende:order to prove the conver-

side all the agents will have reached the same steady=stategence of the proposed algorithm towards a steady-stataslet

as agenj. Let us callz andy the two agents on the boundariesonsider an interval of timé, to + Atg], with ¢y = ty., for

of the cut. Sincex andy have boot reached a steady statayhich the forestF (¢, to+Ato) is connected. This implies that

s’ ands” respectively, they must be sending a state which s#me agents play the role of leaves for the resulting spgnanin

equal to their common knowledge to each other. However, tiree 7. Indeed, any further aggregation of these agents with

two steady states ands’”” have been supposed to be differentheir fathers will not change the state of the fathers. This

so the two agents andy cannotbe sending a state equal tas due to the fact that all the knowledge brought by the

their common knowledge, to each other. Indeed, this wouldleaves is already available to the fathers in their common
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knowledge (see Remark 2). Furthermore, according to thee provided in Section VII. |
Observation Propagation proof (Section VI-B2) only the mos Remark3: A few important remarks are now in order:

recent observations will be sent by the leaves to the fathers) The gossip algorithm described in the dynamic case

Now, let us consider a new interval of tine,, ¢, + Aty allows the agents to “track” the steady-stdtgven by
with ¢, = to + Ao + 1. We can use the same argument  eq. (17). In fact, by applying the local aggregation rule
with respect to a new spanning-tréé obtained by removing given in eq. (14) each agent can replace the previous
the leaves from the original spanning-trée In fact, there observation with the latest one on its own state, and by
are some other agents which play the role of leaves for the applying the dynamic aggregation rule given in eq. (7) if
new spanning-treg” in the time intervalt, ¢1 + Aty]. This two agents perform an aggregation only the most recent
implies again that (at least) these agents will always shad t observation of any agent is propagated over the network.

common knowledges;. for any further aggregation to their 2y The convergence capability of the proposed algorithm
fathers. At this point, since the number of agents is finite, b depends on whether the time interval between two

repeating this reasoning it will exist an interyal, ¢, + Aty consecutive observations update is sufficiently long with
after which the residual spanning trg€" will be composed respect to the nature of the edge selection proeess
of only one agent, whose states is the aggregation of all However, even if some steady-states are missed, the
the most recent observatiorsvailable (at timef;) over the agents still keep tracking the most recent one.

network. Let us now consider, a new spanning tfEe"!

composed of such an agenand all of its one-hop neighbors. In the following, an analysis to derive an upper-bound of

the convergence time for the worst-case scenario is propose

There will exist an intervalt;, 1, tn+1 + Aty1] after which ! .
. Lemma6 (Convergence Time)Let us consider an edge
the forestF (¢ t At is connected. As a result, all .
U (thi1, thia+ Apia) selection process such thatvt 3At¢ € N so that the forest

the agents belonging to this spanning tree will have reach 1 t+At) is connected. [BM € N : At < M v, then the

the same knowledge as the agénthis is due to the fact that ,
multi-agent system can always reach the convergence teward

for any aggregation, agentwill be the only to have its state . ) .
. Y aggreg » ag y . a steady-state if the following condition holds between two
different from the common knowledge. Therefore accordmc% . :
nsecutive observations update:

to the Remark (2), the other agents will reach its statBy
iterating the same reasoning, there will be an interval okti fopr >t +d-M, YkeN (19)
[tan, tan + Atay] for which the related spanning trge?" will
coincide with the original spanning treg. This implies that whered is the diameter of the spanning trge
all the agents will be reached the same states the agent. Proof: The proof follows the same argument of the
Therefore, according to the proof of existengeis a steady steady-state convergence proof (Section VI-B3) by assgmin
state for the multi-agent system. that an upper bound is available to the time required for
4) Steady-State Uniqueneskt order to prove the unique- the forest to be connected. Furthermore, let us assume that

ness of the steady state, it will be shown that any sequenceabftime t = #,, one or more agents have performed an
aggregations over the network, where each agent is coesidevbservation update over the network. Under this assumption
at least once, is always thie combination of the observationsthe information contraction process towards a single agent
set at timet = £, that is: described in Section VI-B3 takes in the worst case, i.e., the
. PN PN - - PRSP leaves are the last agents to perform an aggregation, time
S() = 51(lk) ©52(l6) © - Dsnlli), V€ [t tesa). t; = (d/2) - M. In pgrticular, t?le state of S?chh gan agent
This can be proven by recalling the properties given inrepresents the aggregation of the latest set of observation
Lemma 5 and the result concerning the proof of the Olavailable over the network up to tintg. In the same way, the
servation Propagation (Section VI-B2) along with the prodhformation propagation process from such an ageta all
of Steady-State Convergence (Section VI-B3). In fact, thbe other agents over the network described in Section VI-B3
observation propagation result guarantees that, anytimoe ttakes in the worst case, i.e., one of the leaves of the previou
agents perform an aggregation, only the most recent obserspanning-tree is the last agent to perform an aggregation,
tion of any agent is propagated over the network. Furthegmotime ¢; = (d/2) - M. Therefore, the overall time required
according to the convergence proof, when a steady-statetasthe algorithm to converge in the worst case scenario is
reached over the network, it embodies all the most recem: = t1 + t2 = d - M. Note that, in the case an update is
observations available up to timg. Finally, due to Lemm&?, performed by any agent before the contraction process ends,
the particular sequence of aggregations does not affect thee,i,, < t,+d-M, the state spread by agemill no longer
result due to the commutativity and associativity progsiti represent the aggregation of the most recent set of obgergat
while the presence of several occurrences of the same stateavailable over the network, and therefore at the end of the
be neglected due to the idempotence property. As a resalt, fropagation process, no steady-state will be reached #or th
combination of the observations set at time ;. is achieved, interval [ty,, 1 1). [ ]
that is: Note that Lemma 6 provides only a theoretical characteriza-

_ AR R = e tion of the convergence time for the proposed gossip algorit

5) = h(te) OL(ty)© - Slnlt), However, in a reagl scenario agents I?)er}?orm ti?e upgatlggf thei
that is the same result as in the centralized aggregatie@nszh observations independently and asynchronously, therefor
given in eq. (17). Details concerning the algorithm exemuti control can be provided for the convergence of the algorithm
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apart from the design of a “smart” edge selection process abl Note that, by applying the local update rule given in Theo-
to keep the upper-bountl/ as small as possible. rem 2, the agents can track the current steady-state regardl
As far as the computational complexity of the proposeef the observations update, hence as pointed out in Remark 3
algorithm for the dynamic scenario is concerned, it shouftb re-initialization is required for the system. As a matter
be noticed that from the single agent perspective, the sanfefact, all the agents reaches the steady-state regarafess
operations as for the static scenario have to be carriedloutthe update performed by agetsnd4. In particular, agents
though with an inverse order: 1) BBAs aggregation, 2) Ngveltl and 2 reach the steady-state at time= 9, as shown in
extraction. Therefore, the same considerations hold. lRéga Table XXVI. Obviously, further communications up to time
the memory occupancy, two additional BBAs, namelyt) ¢ = 12 are required to propagate this result over the network,
and/;(t) have to be stored by each agent, compared to the shown in Tables XXVII, XXVIIl and XXIX.
static scenario. Therefore, also in this case, in the wease

scenario the memory requirement is of the order of the number [ Set#] s1 [ s2 [s1®s2 [ 812 [ 51,52 |
of agentsn. [ 0] O 0.23 0 0.23
{a} | 01]02| 005 0 0.05
{b} |08|07]| 071 0 || 071
VIlI. NETWORKED TBM - DYNAMIC SCENARIO: AN fa, 0} | 01]01] 0.01 1 0.01
EXAMPLE TABLE XVII

) . ) . DYNAMIC DISTRIBUTEDTBM: T=1, 51 & s2
In the following, an extension of the example given in

Section V where agents collect new observations over the tim

is proposed. The aggregated sensor readings on the cldsses o (Set# ] o [ 5 [ 5 @5 [ 5s [ o055 ]
target provided by the agents are expressed by the BBAs given 0 AVERE) 0341 O 0341
in Table XIV. Note that, an observation update is performed {a} |005|01]| 0011 0 0.011
by agents3 and4 at timet = 5. As a consequence, according {b} | 0.71| 0.8| 0.647 0 0.647
to eq. (17) two different aggregated knowledge are avalabl {a, b} [ 0.01]01] 0001 | 1 | 0.001
for the centralized aggregation schema, namely one up ® tim TABLE XVIII

t = 5 and the other one for > 5. In particular, Table XV DYNAMIC DISTRIBUTEDTBM: T=2, 51 & s3

shows the aggregated knowledge about the class of targets fo
t > b. ACCOfding to |t, the system classifies the target as aFina”y’ according to Theorem 2 the mu|ti-agent System
truck. converges towards the same knowledge about the class of
targets as for the centralized aggregation schema. This eac
agent correctly classifies the target as a truck. In addifion

0 0 0 0 0 0 0 0 should be noticed how the mass of the emptysa¢f)) has

{a} 0.1 0.2 0.1 0.2 0.3 0.1 0.1 . . . S

(b} o8 | 07| o8| 07| 04 07 | osg | @ high value to underline a contradiction of the initial aigen
{a, b} | 0.1 0.1 | 01 0.1 0.3 02 | 0.1 observations, as detailed in Table XIV.

[(Set# [ 1(0) [ 5(0) [ 60) [ G0 [H0) [ 66 [ 66 ]

TABLE XIV S —
OBSERVATIONS COLLECTED BY THE SYSTEM OF5 AGENTS. [ Set# ] so [ sa [ s2®sa ] 524 | 52,54 |
0 0.23]| O 0.407 0 0.407
{a} 0.05| 0.2 | 0.017 0 0.017
{b} 0.71| 0.7 0.575 0 0.575
[ Set#] si2 [ si2s | si2sa | si23s5 || CIBM | {a,b} | 0.01] 01| 0001 | 1 | 0.001
[ 0.23] 0.336 ] 0.4134[ 0.58966] 0.58966 TABLE XIX
{a} | 0.05|0.016| 0.0034| 0.0021 || 0.0021 DYNAMIC DISTRIBUTEDTBM: T=3, 55 & 54
{b} 0.71| 0.646 | 0.583 | 0.40818| 0.40818
{a, b} | 0.01| 0.002 | 0.0002 | 0.00006 || 0.00006
TABLE XV —
CENTRALIZED TBM: FINAL RESULT AND PROGRESSIVE AGGREGATION | Set# ] ss [ s5 [ s3®ss | 535 || 83,55 |
USING THE NEW OBSERVATION FOR AGENT3 AND 4. 0 0.341| O 0.5395 0 0.5395
{a} 0.011 | 0.3 | 0.0069 0 0.0069
o _ _ {b} |0647| 04| 04533 | 0 | 0.4533
The data aggregation is carried out over the spanning tree {a, b} | 0.001| 0.3 | 0.0003 | 1 | 0.0003
T = {‘/, E} with £ = {612,613,635,624}. In particular, TABLE XX
Table XVI depicts the set of selected edges. Note that, the DYNAMIC DISTRIBUTED TBM: T=4, s3 @ s5

convergence cannot be reached by the multi-agent system for
the initial set of observations (up to time= 0) due to the
update of the agents observations at time 5. Furthermore,
these updates prevent also the application of the localtapda
rule described in Theorem 1 since it does not allow to removeln this work an extension of the Transferable Belief Model
the previous observations from the current knowledge of the a distributed multi-agent context has been presented. Tw
agents. Nevertheless, as explained in Section VI, the lochtfferent scenarios, namely static scenario and dynange sc
update rule given in Theorem 2 can be used instead. nario, have been considered. A distributed protocol has bee

VIII. CONCLUSIONS
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Time | t=1 | t=2 | t=3 | t=4 | t=5 | t=6 | t=7 | t=8 | t=9 | t=10 | t=11 | t=12
Edge | ez | e13 | e2a | e35 | U.O. | e2q | e35 | e13 | enn €24 €13 €35

TABLE XVI
EDGE SELECTION PROCESSUPDATED OBSERVATIONS AT =5 (U.0.)

| Set#| S3 |p3 | 51;2 | I3 || S3 | | Set#| S1 | S2 | s1 QR s2 | 51,2 || S1, S2 |
0 0.5395] O | 0.463] O || 0.5362 0 0.58966| 0.341 | 0.73543462] 0.341] 0.58966
{a} | 0.0069| 0.1| 0.033| 0.1 || 0.0102 {a} | 0.0021 | 0.011| 0.00002586| 0.011 || 0.0021
{b} | 0.4533| 0.8 | 0.501| 0.7 || 0.453 {b} | 0.40818| 0.647 | 0.26453946| 0.647 || 0.40818
{a, b} | 0.0003| 0.1 | 0.003| 0.2 || 0.0006 {a, b} | 0.00006| 0.001| 0.00000006| 0.001 | 0.00006
TABLE XXI TABLE XXVII ~
DYNAMIC DISTRIBUTED TBM: T=5, LOCAL AGGREGATION ON AGENT3’S DYNAMIC DISTRIBUTED TBM: T=10,52 @ s4
KNOWLEDGE.
- [Set#] s1 [ s2 | s1®s2 | 512 [ s1,52 |
[ Set# ] sa [pa [ 557 [l [| sa | T | 0.58066] 0.5362 0.814799044] 0.5362 | 0.58966
0 0407 0 10231 0 [ 0341 {a} | 0.0021 | 0.0102| 0.000023292| 0.0102 | 0.0021
{a} |0.017| 0.2 | 0.05| 0.1 || 0.011 {b} | 0.40818| 0.453 | 0.185177628| 0.453 || 0.40818
{v} | 0575071071 08| 0.647 {a, b} | 0.00006| 0.0006 | 0.000000036] 0.0006 || 0.00006
{a, b} | 0.001| 0.1 ] 0.01| 0.1 || 0.001
TABLE XXV .
TABLE XXII DyNAMIC DISTRIBUTEDTBM: T=11,s1 @ s3
DYNAMIC DISTRIBUTED TBM: T=5, LOCAL AGGREGATION ON AGENT4'S
KNOWLEDGE. —
[ Set#] s [ 52 | s1®s2 [ 512 [ s1,82 |
(Set#[ 5 [ 5 | %®si [ 521 [ 52,51 0 0.58966 | 0.5362 | 0.814799044] 0.5362 || 0.58966
’ ! {a} | 0.0021 | 0.0102| 0.000023292| 0.0102 || 0.0021
0 ]0.40710.341] 0.626537] 0.407 || 0.341 {b} | 0.40818| 0.453 | 0.185177628| 0.453 || 0.40818
{a} | 0.017 | 0.011| 0.000215| 0.017 || 0.011 {a, b} | 0.00006| 0.0006 | 0.000000036| 0.0006 | 0.00006
{b} | 0.575| 0.647 | 0.373247| 0.575 || 0.647
{a, b} | 0.001| 0.001 | 0.000001| 0.001 | 0.001 TABLE XXIX .
DYNAMIC DISTRIBUTEDTBM: T=12,s3 @ s5
TABLE XXl

DYNAMIC DISTRIBUTED TBM: T=6, s2 é S4

(St 55 | 55 | 05 [ 505 [ 505 ] believe that the proposed techniques make it possible to

] 553651 05395 0 794169461 0535511 0 5362 effectively apply the TBM in important engineering fields
{a} | 0.0102| 0.0069| 0.00007758| 0.0069 || 0.0102 such as multi-robot systems or sensor networks, where the

{b} 0.453 | 0.4533| 0.20575278| 0.4533| 0.453 distributed collaborations among players is a critical get
{a, b} | 0.0006 | 0.0003| 0.00000018| 0.0003 || 0.0006 crucial aspect.
TABLE XXIV Future work will be mainly focused on the extension of
DYNAMIC DISTRIBUTEDTBM: T=7, 53 @ s5 the proposed technique on more complex topologies such as
graphs with cycles. Indeed, whereas tree-like topologas ¢
[ Set#] s1 | s3 | s1®ss | 51,3 || 81,583 ] properly represent interaction among static sensors, shefi
0 0.341] 0.5362 0.7059382] 0.341 [ 0.5362 cyclic structures better describes the interaction amoolbjile
{a} 0.011| 0.0102| 0.000129 | 0.011 || 0.0102 units.

{b} 0.647 | 0.453 | 0.2939322| 0.647 || 0.453
{a, b} | 0.001 | 0.0006 | 0.0000006| 0.001 || 0.0006
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TABLE XXV ] o
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