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A Networked Transferable Belief Model approach
for Distributed Data Aggregation

Andrea Gasparri, Flavio Fiorini, Maurizio Di Rocco and Stefano Panzieri.

Abstract—This works focus on the extension of the Trans-
ferable Belief Model (TBM) to a multi-agent distributed context
where no central aggregation unit is available and the information
can be exchanged only locally among agents. In this framework,
agents are assumed to be independent reliable sources which
collect data and collaborate to reach a common knowledge about
an event of interest. Two different scenarios are considered: in
the first one agents are supposed to provide observations which
do not change over time (static scenario), while in the second
one agents are assumed to dynamically gather data over time
(dynamic scenario). A protocol for distributed data aggregation,
which is proved to converge to the basic belief assignment (BBA)
given by an equivalent centralized aggregation schema based on
the TBM, is provided. Since multi-agent systems represent an
ideal abstraction of actual networks of mobile robots or sensor
nodes, that are envisioned to perform the most various kind of
tasks, we believe the proposed protocol paves the way to the
application of the TBM in important engineering fields such as
multi-robot systems or sensor networks, where the distributed
collaboration among players is a critical and yet crucial aspect.

Index Terms—Transferable Belief Model, Distributed Algo-
rithms, Multi-Agent Systems

I. I NTRODUCTION

Data fusion is a research area that is growing rapidly
due to the fact that it provides means for combining pieces
of information coming from different sources/sensors. As a
result, an enhanced overall system performance, i.e., improved
decision making, increased detection capabilities, diminished
number of false alarms, improved reliability, with respectto
separate sensors/sources can be achieved [1].

Indeed, data fusion techniques play an important role in
the context of multi-agent systems where information coming
from different sources must be aggregated in order to provide
a meaningful description of the surrounding environment. The
majority of works available in the literature are based on the
Bayesian framework, where the aggregation is achieved by
applying the Bayes rule. The most representative example
is the Kalman Filter, where noisy data is assumed to be
described by means of a Gaussian probability distribution [2].
Nevertheless, several works have been proposed to deal with
the multi-agent data fusion in a Bayesian framework [3], [4],
[5], [6]. Indeed, as suggested in [3], the single-agent paradigm
might be inadequate when uncertain reasoning is performed
by entities of a system between which there is some distance,
either spatial, temporal or semantic. For these systems, a multi-
agent view, where each agent is an autonomous intelligent
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subsystem, is thus more suitable. Each agent holds its own
partial domain knowledge, accesses some external information
source and consumes some computational resource. Bayesian
Networks represent a possible way of implementing this view
within the Bayesian Framework. A Bayesian Networks is a
directed acyclic graph where nodes represent variables andthe
graph represents conditional independence relations among the
variables. The reader is referred to [7] for further details.

The Theory of Evidence introduced by Arthur P. Dempster
and Glenn Shafer (DS) represents a valid alternative to the
Bayesian framework [8]. The main difference concerns the
way in which the ignorance is handled: in the probabilistic
framework the uncertainty is treated by splitting the amount
of credibility among plausible events, in the DS framework
a belief is assigned to the set describing all the plausible
hypotheses without supporting any in particular. Several works
can be found in the literature providing a comparison between
these two frameworks [9], [10], [11], [12]. Depending on the
specific application, one framework can be more adequate than
the other [13].

The DS framework was further extended by the Trans-
ferable Belief Model (TBM) introduced by Philippe Smets
[14]. In particular, TBM introduces the idea of open word
assumption in the DS framework. This implies the set of
hypotheses not to be exhaustive, therefore information can
be contradictory. Indeed, the concept of contradiction is a
powerful tool to detect cases where information fusion has
to be considered unreliable, case that is not considered in the
Bayesian technique. The main limitation of this framework is
the computational complexity, which grows exponentially with
respect to the number of elements. To overcome this draw-
back, several approximation techniques have been proposed
[15], [16]. However, in case a minimal number of events is
enough to model the problem, the TBM approach has been
effectively used, e.g, in diagnostic applications [17] andtarget
identification [18].

In this paper the data aggregation problem for a multi-agent
system is investigated. A multi-agent system represents an
ideal abstraction of actual networks of mobile robots or sensor
nodes that are envisioned to perform the most various kind of
tasks. In the last decade networked multi-agent systems have
drawn the attention of a large part of the research community
[19], [20], [21], [22]. The motivation behind the interest
on multi-agent systems is that a multi-agent approach offers
several advantages such as a larger range of task domains or
a higher robustness and flexibility [23]. On the other hand,
the inherently distributed nature of these systems makes the
design of effective algorithms very challenging as the overall
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performance depends significantly on issues arising from the
complex interactions among the agents [24]. In this work, we
attempt to answer to the following question: Is there a way to
extend the TBM framework to a distributed context where no
central aggregation unit is available and the information can be
exchanged only locally? Indeed, being able to answer such a
question would make it possible to effectively apply the TBM
in important engineering fields such as multi-robot systemsor
sensor networks, where the distributed collaborations among
players is a critical and yet crucial aspect. In this framework,
agents are assumed to be independent reliable sources which
collect data and collaborate to reach a common knowledge.
Two different scenarios are considered, in the first one agents
are supposed to provide observations which do not change
over time (static scenario), while in the second one agents
are assumed to dynamically gather data over time (dynamic
scenario). A protocol for distributed data aggregation which
is proved to converge to the basic belief assignment (BBA)
given by a centralized aggregation based on the Transferable
Belief Model (TBM) conjunctive rule is provided.

Some works can be found in the literature discussing either
static and dynamic aggregation, [25], [26], [27], [28]. In [25],
the problem of sensors reliability estimation is addressed. The
idea is to introduce a metric distance between the sensor
readings and the reality. This allows to tune the discounting
factor belonging to each sensor in order to minimize the
distance itself. Both cases where the training data set is deter-
ministic or prone to uncertainties are considered. Regarding
the uncertainties scenario, an elegant comparison between
standard (Bayesian) classifier and the proposed approach is
shown. Furthermore, an extension to data-fusion is provided:
in this case, an optimization process, to find out which is
the optimal discounting distribution among the sources, is
adopted by considering the pignistic probability achievedafter
applying the conjunctive rule on the observed belief assign-
ments. In [26], the authors propose a novel framework for
evaluating sensor reliability by integrating prior and contextual
information. Differently from the previous case, where the
knowledge about the training data set was expressed by means
of pignistic probabilities, in this work this knowledge is
represented by means of belief functions. Consequently, au-
thors use a dissimilarity metric, namely the evidence distance,
which guarantees the respect of the mathematical properties
holding in the TBM framework. Relying on these assumptions,
analytical procedures allow to achieve discounting factors. The
proposed approach aims at finding an estimate of both data-
fusion quality and sensor reliability. In the latter case, the
discounting factor is gathered using the Shapley entropy about
belief functions as an indicator. In [27], the authors consider
uncertain data whose uncertainty is represented by belief
functions whose combination can be partially conflictual. In
particular, the authors discuss the nature of the combinations
(conjunctive versus disjunctive, revision versus updating, static
versus dynamic data fusion), they argue about the need for a
normalization, examine the possible origins of the conflicts,
determine if a combination is justified and analyze many
of the proposed solutions. Furthermore, the authors discuss
the Markovian decaying assumption, a representation that

allows to model the decaying of the source reliability over
the time: this model is a useful representation when dynamic
systems are taken into account. In [28], a framework for fault
diagnosis is described. In particular the Dynamic Evidential
Reasoning (DER) is presented: it allows to model a system
by a set of attributes. These attributes, whose origin can
be heterogeneous, are weighted by discounting factors and
merged in order to provide a one-step forward estimate about
the fault-state of the system. The evolution of the system relies
on the Markovian decay assumption which allows to cope
with dynamical system faults. In order to properly set the
initial attributes and the related importance into the model,
an optimization process over a training data-set is exploited
by dedicated optimization tools. The framework fits well in
time-varying examples like two-tanks system and gyroscope
reliability.

Compared to these contributions, our work is mainly fo-
cused on the networking aspects concerning the data aggre-
gation rather than the interpretation of the data itself. More
specifically, our main contribution is the development and
the theoretical characterization of a distributed protocol for
data aggregation within the TBM framework in a multi-agent
context.

II. T HEORY OFEVIDENCE

The Theory of Evidence is a formalism which can be
used for modeling uncertainty instead of classical probability.
Theory of Evidence embraces the familiar idea of using a
number between zero and one to indicate the degree of
confidence for a proposition on the basis of the available
evidence.

Let Ω = {ω1, . . . , ωn} be a finite set of possible values of a
variableω, where the elementsωi are assumed to be mutually
exclusive. LetΓ(Ω) , 2Ω = {γ1, . . . , γ|Γ|} be the power set
associated to it. In this framework, the interest is focusedin
quantifying the confidence of propositions of the form: “the
true value ofω is in γ”, with γ ∈ Γ. The propositions of
interest are therefore in one-to-one correspondence with the
subsetΩ, and the set of all propositions of interest corresponds
to the elements ofΓ. The setΩ so defined, is referred to as
frame of discernments.

Definition 1 (BBA): A functionm : 2Ω → [0, 1] is called a
basic belief assignment if

∑

γa∈Γ

m(γa) = 1 with m(∅) = 0. (1)

Thus for γa ∈ Γ, m(γa) is the part of confidence that
supports exactlyγa, i.e. the fact that the true value ofω is in
γa, but due to the lack of further information, does not support
any strict subset ofγa. The first condition reflects that the total
confidence has measure one and the second condition reflects
that the total confidence has measure one. Note thatm(γa)
andm(γb) can be both equal to zero even ifm(γa ∪ γb) 6= 0.
Further,m(·) is not monotone under inclusion, i.e.γa ⊂ γb
does not implym(γa) < m(γb).
Notice that the BBA represents the atomic information in the
theory of evidence.
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The main criticism to Shafer formulation concerns the
application of the Dempster-Shafer (DS) combination rule.In
fact, whenever there is a strong conflict between sources to be
combined, the straightforward application of DS combination
rule can produce a result in which certainty is assigned to
the minority opinion [29]. A more refined approach is based
on the Transferable Belief Model (TBM) proposed by Philips
Smets in [30]. The TBM theory, like the Shafer formulation,
relies on the concept of basic belief assignment function, but
removes the assumption ofm(∅) = 0. This allows to omit the
normalization constant in the Dempster’s rule of combination
and conditioning.

Definition 2 (Smets - operator⊗ ):
In the TBM, the combination rule is, therefore, defined in this
way:

sij , si ⊗ sj =
{

(mi ⊗mj)(γa); γa ∈ Γ
}

(2)

where:

mij(γa) , (mi ⊗mj)(γa) =
∑

γb, γc

γb ∩ γc = γa

mi(γb)mj(γc). (3)

Note that, for the sake of readability the notation
mi(γa)⊗mj(γa) , (mi ⊗mj)(γa) will be used indiscrim-
inately in the rest of the paper. In the same way, the notation
sijk = si ⊗ sj ⊗ sk will be used to compactly denote several
Smets aggregations.

The fact thatm(∅) > 0 can be explained in two ways:
the open world assumption and the quantified conflict. The
open world assumption reflects the idea thatΩ might not be
exhaustive, i.e. it might not contain all the possibilities. Under
this interpretation, being∅ the complement ofΩ, the mass
m(∅) > 0 represent the modeling errors, that is the fact that the
truth might not be contained inΩ. The second interpretation
of m(∅) > 0 is that there is some underlying conflict between
the sources that are combined in order to produce the BBA
m. Hence, the mass assigned tom(∅) represents the degree
of conflict. In particular, it can be computed as follows:

mij(∅) = 1−
∑

γa 6= ∅
γa ∈ Γ

mij(γa) (4)

III. PROBLEM SETTING

Let us consider a network of agents described by an
undirected graphG = {V,E}, whereV = {vi : i = 1, . . . , n}
is the set of nodes (agents) andE = {eij = (vi, vj)} is
the set of edges (connectivity) representing the point-to-point
communication channel availability. Note that, since the graph
is undirected, the existence of the edgeeij (from nodei to
nodej) implies the existence of the edgeeji (from nodej to
node i). Thus, no distinction will be made in the following
betweeneij and eji. Moreover, we will refer toN (i) as the
neighborhood of agenti, namely the set of indices of the
agents directly connected through an edge with agenti. In
this framework an agent can be of any kind, for instance a
mobile robot, a sensor node, a software agent or else.

Let us now introduce a simple classification problem to
explain the issues which arise from the straightforward appli-
cation of the TBM within a distributed context. In particular,
the following assumptions are made for this scenario: 1) no
central unit is available for data aggregation, 2) communication
among sensor nodes is limited to one-hop neighbors. Indeed,
these assumptions reflect the operational conditions for the
majority of multi-robot and sensor network applications [31],
[32], [33]. Furthermore, it should be noticed that we do not
focus on problems related to the data interpretation such
as the reliability problem addressed in [25]. Differently,our
attention is towards the issues which arise from the extension
of the TBM within a distributed context where only local
communication is permitted and no central aggregation unit
is available.

Set # Node 1 Node 2 Node 3 s1 ⊗ s2 ⊗ s3

∅ 0 0 0 0.79
{a} 0.2 0.8 0.1 0.066
{b} 0.5 0.1 0.85 0.1425

{a, b} 0.3 0.1 0.05 0.0015

TABLE I
AN EXAMPLE OF CLASSIFICATION PROBLEM. SENSOR NODESBBA.

As an example, similarly to the classification problem
proposed in [25], let us consider two different possible classes
of targets, e.g., cars or trucks, that isΩ = {a, b}. Let
us supposed that the aggregated sensor readings provided
by the nodes on the classes are expressed by the BBAs
si =

{

mi(∅), mi(a), mi(b), mi(a, b)
}

given in Table I. In
particular, let us assume each node to be equipped with some
sensors such as a speed sensor, a volume sensor and so on.

The objective of the sensor network is to perform this
classification task by means of a distributed data fusion based
on point-to-point communication over the network topology
depicted in Figure 1. Let us now investigate the problems
arising from the application of the Smets combination rule.
In particular, let us suppose that node1 first collaborates with
node 2 and successively sets up a collaboration with node
3. At this point, a question arises: what happens if node1
collaborates again with node2? Let us further investigate this
situation.

Fig. 1. Network topology.

In detail, when node1 collaborates with node2, they
perform a data fusion over their current BBAs, that is
s12 = s1 ⊗ s2 = {0.42, 0.42, 0.13, 0.03}. As a result, both
nodes reach a new common knowledge about the class
of the target. In the same way, when node1 collaborates
with node 3, they perform a data fusion over their current
BBAs and reach a new (common) knowledge about the
class of the target which classifies the target as a truck,
that is s123 = s12 ⊗ s3 = {0.79, 0.066, 0.1425, 0.0015}.
Indeed, this is the same knowledge (s123 = s1 ⊗ s2 ⊗ s3)
that would be reached in a centralized scenario (Table I).
At this point, if node1 and node2 collaborate again, by
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using the Smets combination rule, they would reach a new
wrong knowledge which classifies the target as a car,namely
s12312 = s123 ⊗ s12 = {0.91, 0.0606, 0.02865, 0.00015}),
where the information due to the first communication among
the two nodes would be considered twice. Therefore, the
Smets operator cannot be used in a distributed context as the
result of the target classification depends upon the particular
sequence of selected edges. Indeed, a different combination
strategy must be designed in order to overcome this limitation.

The key idea of this work is that the current knowledge of
a node can be split with respect to any of its neighbors in two
parts. The first represents the portion of information shared
by the current BBAs of the two nodes, while the second is
the novel portion of information brought by the BBA of each
node w.r.t. another one. As a result, this issue can be simply
overcome by restricting the aggregation among nodes to the
novel portion of information, and then combining the obtained
result with the shared knowledge. In this way, the result of
their previous aggregation is not considered twice by node1
and 2 in the next collaboration. A formalization of this idea
is provided in the first part of the paper.

Let us now further suppose that an agent can dynamically
collect new observations over time. As a consequence, the
following question arises: what happens if some agents update
their observations while performing the data aggregation?
Indeed, the protocol must take into account the fact that a node
might update its observation. To this end, a proper extension of
the proposed distributed data aggregation protocol to overcome
this limitation is discussed in the second part of the paper.

IV. D ISTRIBUTED DATA AGGREGATIONV IA NETWORKED

TBM - STATIC SCENARIO

In this section, a local interaction ruleR to perform the
distributed TBM data aggregation within a multi-agent system
is described. In particular, each agent is supposed to provide
the same observation over time. Furthermore, the following
assumptions on the network of agents are made:

Assumptions1:
• The network can be described by a connected undirected

graphG = {V , E}.
• The communication range is limited by a maximum

communication radiusr.
• The communication among agents is asynchronous,gos-

sip like [34].
• A distributed algorithm to build a spanning tree

T = {V, Ê} with Ê ⊆ E is available to the agents, for
example by using [35], [36].

• Agents are capable to handle the storage of a proper set
of data.

In the proposed framework the interaction among agents
can be formally modeled by means of a gossip algorithm [34]
is defined as a triplet{S,R, e} where:

• S = {s1, . . . , sn} is the set containing the local state
si ∈ Rq of each agenti in the network.

• R is the local interaction rule (⊕ binary operator) that,
for any couple of agents(i, j) with eij ∈ E, gives:

R : Rq × Rq −→ Rq,

with q the number of focal elements andRq the set of
all possible mass assignment vectors.

• e is the edge selection process that specifies which edge
eij ∈ E(t) is selected at timet.

From an algorithmic point of view, a possible implementa-
tion of the gossip algorithm is given in Algorithm 1.

Algorithm 1 : Gossip Algorithm
Data: t = 0, si(0) ∀ i = 1, . . . , n.
Result: si(tstop) ∀ i = 1, . . . , n.

while stop condition do
• Select an edgeeij ∈ E(t) according toe.
• Update the states of the selected agents applyingR:

si(t+ 1) = si(t)⊕ sj(t)
sj(t+ 1) = sj(t)⊕ si(t)

• Let t = t+ 1.
end

Now follows the definition ofS andR:
Definition 3 (S): Let S(t) = {s1(t), . . . , sn(t)} be the

set of the agents states defined with respect to a finite
frame of discernmentΩ = {ω1, . . . , ωm}, where si(t) =
{mi(t, γa), γa ∈ Γ}, si(t) ∈ R|Γ| is the set of basic belief
assignment (BBA) of agenti over the power setΓ(Ω) at
a given time t ∈ N. Note that, in the following the time
dependence will be omitted for sake of clarity if not strictly
required.

Let us now introduce the binary operator⊙, which is useful
to break up any set of basic belief assignment with respect to
any other one.

Lemma1: Let us consider two sets of basic belief as-
signments (BBA) sk =

{

mk(γa); ∀γa ∈ Γ
}

, and
si =

{

mi(γa); ∀γa ∈ Γ
}

for which the following holds:
sk = si ⊗ sj . It can be defined an operator⊙:

s̃ik , sk ⊙ si = sj . (5)

In particular, each element ofsj =
{

mj(γa); ∀γa ∈ Γ
}

,
can be computed recursively as follows:

mj(γa)=

mk(γa)−
∑

γb ∩ γc = γa

γb ⊃ γa

mj(γb)mi(γc)

∑

γa⊆γb
mi(γb)

, (6)

by starting from the element of the power-set with highest
cardinality,γ|Γ| = {Ω}, and moving down to the elements with
cardinality equal to one, i.e.,{γi+1 = {ωi}, i = 1, . . . , n},
with γ1 = ∅.

Proof: The proof is a simple consequence of the appli-
cation of Smets operator⊗. Let us assumesk can be written
as the Smets aggregation ofsi andsj :

sk , si ⊗ sj =
{

(mi ⊗mj)(γi); γi ∈ Γ
}
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where:

mk(γa) , (mi ⊗mj)(γa) =
∑

γb∩γc=γa

mi(γb) ·mj(γc)

= mj(γa)
∑

γa⊆γb

mi(γb) +
∑

γb ∩ γc = γa

γb ⊃ γa

mj(γb)mi(γc).

At this point, by collecting with respect tomj(γa) the follow-
ing expression is obtained:

mj(γa)=

mk(γa)−
∑

γb ∩ γc = γa

γb ⊃ γa

mj(γb)mi(γc)

∑

γa⊆γb
mi(γb)

.

Therefore,sj =
{

mj(γa); ∀γa ∈ Γ
}

is obtained.
Let us now introduce the operatorR which is used in the

static scenario to perform the local aggregation among the
agents.

Definition 4 (R - operator⊕ ):
Let R be a rule to combine the basic belief assignments for
two agents(i, j) such thateij ∈ Ê. This rule can be defined
from the agenti standpoint (specularly for agentj) as follows:

si(t+ 1) = si(t)⊕ sj(t)

=
{

(

m̃j
i (t, γa)⊗ m̃i

j(t, γa)
)

⊗ m̄i,j(t, γa);

∀ γa ∈ Γ
}

,

(7)

with ⊗ the Smets operator. Let us denote withs̃ji (t) =
{

m̃j
i (t, γa); ∀γa ∈ Γ

}

the novelty of the agenti with
respect to the agentj, which can be computed recursively
as follows:

m̃j
i (t, γa) =

mi(t, γa)−
∑

γb ∩ γc = γa

γb ⊃ γa

m̃j
i (t, γb)m̄i,j(t, γc)

∑

γa⊆γb
m̄i,j(t, γb)

(8)
and s̄i,j(t) =

{

m̄i,j(t, γa); ∀γa ∈ Γ} (or equivalently
s̄j,i(t)) is the common knowledge, i.e., the knowledge stored
by both agents after their last aggregation, set to the neutral
elementn = {0, 0 . . . , 0, 1} of the TBM conjunctive rule
before their first aggregation.
Note that, as a consequence of Lemma 1, for a given agent
i the following relation holds between the novelty and the
common knowledge with any other agentj:

si(t) =
{

mi(t, γa); ∀γa ∈ Γ
}

= s̃ji (t)⊗ s̄ij(t)

=
{

m̃j
i (t, γa)⊗ m̄i,j(t, γa); ∀γa ∈ Γ

} (9)

Furthermore, for any couple of agents(i, j), the related
statessi and sj are equal if and only if they are completely
described by their common knowledge, i.e.si = sj = s̄i,j .

Remark1: A few important remarks are now in order:
1) In order to apply the local interaction ruleR, an agent
must have stored all the most recent collaborations with its
neighbors, that is

{

si ⊕ sj ; j ∈ N (i)
}

.
2) As only information concerning collaborations among (1-
hop) neighbors are required, the algorithm is fully distributed
and scalable in terms of memory requirement with respect to
the size of the network.

Regarding the knowledge decomposition (operator⊙) and
local aggregation rule (operator⊕) proposed in this work, a
similarity can be noticed with the concept ofDempsterian
Specialization Matrixdescribed in [37] and its application
to the combination of distinct pieces of evidence. In this
work, Smets presents a tentative definition of the concept
of distinctness for two pieces of evidence. To this end, by
assuming two BBAssA andsB to be two updating of a third
BBA s0, Smets provides a technique, based on the concept
of specialization matrix, to decompose the knowledgesAB

resulting from the combination of these two BBAs (sA and
sB). In particular, by noticing that such a decomposition takes
into account the BBAs0, Smets argues that the two BBAs
sA and sB can be considered distinct only if the BBAs0 is
vacuous, i.e.,m0(Ω) = 1. Although the focus of the work
proposed by Smets is completely different, from a conceptual
perspective, there is a similarity between the notion of novelty
and common knowledge adopted in our work, and the key
elements involved in the knowledge decomposition proposed
by Smets. The reader is referred to [37] for further details.

At this point, in order to prove the convergence of the
proposed algorithm, some properties concerning the local
interaction ruleR must be introduced.

Lemma2 (R properties): The local interaction ruleR de-
fined according to eq. (7) has the following properties:

si ⊕ sj = sj ⊕ si (commutativity)
si ⊕ sj = si if s̄i,j = si (idempotence)

(si ⊕ sj)⊕ sk = si ⊕ (sj ⊕ sk) (associativity)
(10)

for each triple(i, j, k) : eij , ejk ∈ Ê.
Proof: The properties can be proven by applying the

definition given in eq. (7).

• Commutativity:
Let us consider two agents(i, j), then from Definition 4
we have:

si ⊕ sj =
(

s̃ji ⊗ s̃ij

)

⊗ s̄i,j =
(

s̃ij ⊗ s̃ji

)

⊗ s̄j,i = sj ⊕ si

where
(

s̃i ⊗ s̃j

)

=
(

s̃j ⊗ s̃i

)

comes from the commu-
tativity property of the Smets operator⊗ and s̄i,j = s̄j,i
by definition.

• Idempotence:
Let us consider two agents(i, j) for which si = sj = s̄i,j
at a given timet, then we have:

si ⊕ sj =
(

s̃ji ⊗ s̃ij

)

⊗ s̄i,j =
(

n⊗ n

)

⊗ s̄i,j = s̄i,j = si

• Associativity:
Let us consider a triplet of agents(i, j, k) such that
eij , ejk ∈ Ê, then we have:
(

si ⊕ sj

)

⊕ sk = sij ⊕ sk = s̃kij ⊗ s̃ijk ⊗ s̄ij,k

= sij ⊗ s̃ijk = s̃ji ⊗ sj ⊗ s̃ijk
= s̃ji ⊗ sj ⊗ s̃jk = s̃ji ⊗ sjk

= s̃jki ⊗ sjk = s̃jki ⊗ s̃ijk ⊗ s̄ij,k

= si ⊕ sjk = si ⊕
(

sj ⊕ sk

)
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where the equivalent relations̃sijk = s̃jk and s̃ji = s̃jki
come from the independence of knowledge between
nodesi and k with respect toj, due to the properties
of the topology structure of the communication graph,
i.e., a spanning-treeT .

So far, we have introduced a local interaction ruleR and we
have described its properties. In the following, it will be shown
that if the agents apply the gossip algorithm described in
Sec. III with such a local interaction ruleR over the spanning-
treeT , they converge toward a common BBA. In particular,
it will be shown that such a BBA is the same as in the case
of a centralized aggregation based on TBM conjunctive rule
[30].

Definition 5 (Centralized TBM):Let us consider a system
of n agents (sources) where each agenti provides an indepen-
dent set of observations at timet = 0 described by the basic
belief assignmentsi(0) = {mi(0, γa); γa ∈ Γ}. A centralized
aggregation schema would provide the following aggregated
BBA:

s1 2 ... n = s1 ⊗ s2 ⊗ . . .⊗ sn (11)

Let us now introduce the concept of a time-dependent forest
F(t, t+∆) with respect to a given treeT over time as follows:

Definition 6: Let us defineF(t, t + ∆t) = {V, Ê(t, t +
∆t)}, with Ê(t, t + ∆t) =

⋃t+∆t
z=t e(z) and e(z) ∈ Ê, as the

forest resulting from the union of all the edges given by the
edge selection process over the setÊ from time t to time
t + ∆t. Obviously, if the edge processe is such that in the
time interval(t, t+∆t) the forestF(t, t+∆t) is connected,
then the spanning treeT is obtained.

In order to prove the main result of the paper, a useful
relationship between the Smets operator⊗ and the proposed
interaction rule⊕ is now introduced.

Lemma3: Let us consider three agents(i, j, k) such that
eij , ejk ∈ Ê with their observationssi(0), sj(0), sk(0) at time
t = 0. The following holds:

si(0)⊗ sj(0)⊗ sk(0) = si(0)⊕ sj(0)⊕ sk(0) (12)

Proof: The lemma can be proven by applying the defini-
tion given in eq. (7) along with the properties given in eq. (9):

si(0)⊕ sj(0)⊕ sk(0) =
(

si(0)⊕ sj(0)
)

⊕ sk(0)

=
(

s̃ji (0)⊗ s̃ij(0)⊗ s̄i,j(0)
)

⊕ sk(0)

=
(

si(0)⊗ sj(0)⊗ n

)

⊕ sk(0)

wheres̃ji (0)⊗ s̃ij(0)⊗ s̄i,j(0) = si(0)⊗ sj(0)⊗ n is due to
the independence of the agents observation. Now, by defining
sz(0) = si(0)⊗ sj(0), it follows that:

sz(0)⊕ sk(0) = s̃kz(0)⊗ s̃zk(0)⊗ s̄z,k(0)

= sz(0)⊗ sk(0)⊗ n

= si(0)⊗ sj(0)⊗ sk(0)

Let us now introduce the main result of the paper, that is the
convergence of the proposed gossip algorithm towards the ba-
sic belief assignment (BBA) as in the centralized aggregation
schema given in Definition 5.

Theorem1 (Distributed TBM): Let us consider a gossip
algorithm {S,R, e} over a spanning-treeT = {V, Ê} with
S andR defined respectively as in Definition 3 and Defini-
tion 4. Let us assume each agenti at time t= 0 provides an
independent set of observations described by the basic belief
assignmentsi(0) = {mi(0, γa); γa ∈ Γ}. If e is such that
∀ t ∃∆t ∈ N so that the time-variant forestF(t, t+∆t) is
connected, then there will exist a timet = t̄ so that:

si(t
′) = s1(0)⊗ s2(0)⊗ . . .⊗ sn(0) ∀ t′ > t̄, (13)

that is, each agenti converges toward the same BBA as in the
centralized aggregation schema given in Definition 5.

Proof: The proof of the theorem consists of three steps.
First, it will be proven that a steady-state exists for the
proposed gossip algorithm. Successively, it will be proven
that such an algorithm always converges toward a steady-state.
Finally, it will be proven that the steady-state is unique and it
is the same as the result of the centralized aggregation schema
given in eq. (11).

1) Steady-State Existence:In order to prove the existence
of a steady-state for the proposed gossip algorithm, it willbe
shown that a sufficient and necessary condition is that all the
agents share the same states̄. In fact, if all the agents have
the same statēs, according to the interaction rule given in
eq. (7), they will always send the neutral elementn for any
further aggregation. Therefore, the states̄ is itself a steady
state for the multi-agent system. Furthermore, let us prove
by contradiction this condition to be necessary as well. To
this end, let us consider a spanning-treeT computed by
the agents in a distributed fashion. Now, let us suppose two
agentsi and j have reached two different steady states over
the network, that issi(t) = s′ and sj(t) = s′′. Therefore,
according to the definition of a spanning-tree, there will
always exist a (unique) path connecting the two nodesi
and j. Let us now consider for such a spanning-treeT the
pathpij = {vi, vk∈Ni

, . . . , vh∈Nj
, vj} connecting these two

agentsi and j. In particular, as agenti has reached the state
s′, its neighbork will always send to it the neutral element
n as novelty for any further aggregation. This implies that,
the agentk must have reached itself the same steady states′

and be receiving the neutral elementn by its neighbors. The
same argument can be applied to the agentj and its neighbor
h with respect to the steady states′′. Now, by iterating this

Fig. 3. Novelty contraction over the spanning treeT at different time-interval.

reasoning from both ends of the path there will be a cut where
all the nodes on a side will have reached the same steady-
states′ as agenti, while on the other side all the agents will
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Fig. 2. Steady-state convergence over the spanning treeT at different time-interval: a) after the first interval of time during which the treeT is obtained,
the related leaves will send only the neutral element b) after a certain amount of time the root ofT achieve the steady statēs c) Finally the steady state is
spread over the whole net

have reached the same steady-states′′ as agentj, as shown in
Figure 3. Let us callx andy the two agents on the boundaries
of the cut. Since,x andy have both reached a steady state,s′

ands′′ respectively, they must be sending the neutral element
n as novelty to each other. However, the two steady states
s′ and s′′ have been supposed to be different, therefore the
two agentsx andy cannotbe sending the neutral elementn

to each other. Indeed, this would be possible only if the two
steady statess′ and s′′ were the same steady states̄, which
gives the absurd. Therefore a steady state holds if and only if
si = sj ∀i, j ∈ N .

2) Steady-State Convergence:In order to prove the con-
vergence of the proposed algorithm towards a steady-state,
let us consider a spanning treeT computed by the agents
in a distributed fashion over the network topologyG, as
shown in Figure 2. Now, let us consider an interval of time
[t0, t0+∆t0] for which the forestF(t0, t0+∆t0) is connected.
This implies that some agents play the role of leaves for the
resulting spanning-treeT . According to the definition of the
local interaction rule given in eq. (7), (at least) these agents
will always send the neutral elementn to their fathers for any
further aggregation (Figure 2-a). Now, let us consider a new
interval of time [t1, t1 + ∆t1] with t1 = t0 + ∆t0 + 1. We
can use the same argument with respect to a new spanning-
tree T ′ obtained by removing the leaves from the original
spanning-treeT . In fact, there are some other agents which
play the role of leaves for the new spanning-treeT ′ in the time
interval [t1, t1 +∆t1]. This implies again that (at least) these
agents will always send the neutral elementn for any further
aggregation to their fathers. At this point, since the number
of agents is finite, by repeating this reasoning it will existan
interval [th, th +∆th] after which the residual spanning tree
T h will be composed of only one agenti, whose statēs is the
aggregation of all the observations available over the network
(Figure 2-b). Let us now consider, a new spanning treeT h+1

composed of such an agenti and all of its one-hop neighbors.
There will exist an interval[th+1, th+1 +∆th+1] after which
the forestF(th+1, th+1+∆th+1) is connected. As a result, all
the agents belonging to this spanning tree will have reached
the same knowledge as the agenti. This is due to the fact,
that agenti will be the only one to send a novelty different
from n, and therefore any aggregation will let the other agents
reach its statēs. By iterating the same reasoning, there will
be an interval of time[t2h, t2h +∆t2h] for which the related
spanning treeT 2h will coincide with the original spanning tree
T . At this point, all the agents will have reached the same state

s̄ as the agenti (Figure 2-c). Therefore, according to the proof
of existence,̄s is a steady state for the multi-agent system.

3) Steady-State Uniqueness:In order to prove the unique-
ness of the steady state, it will be shown that any sequence of
aggregations over the network, where each agent is considered
at least once, is always the combination of the initial set of
observations, that is:

s̄(t) = s1(0)⊕ s2(0)⊕ . . .⊕ sn(0).

This can be proven by recalling the properties given in
Lemma 2. In fact, the particular sequence of aggregations does
not affect the result due to the commutativity and associativity
properties, while the presence of several occurrences of the
same state can be neglected due to the idempotence property.
As a result, the combination of the initial set of observations
is achieved. At this point, by exploiting the result given in
Lemma 3, the following holds:

s̄(t) = s1(0)⊕ s2(0)⊕ . . .⊕ sn(0)

= s1(0)⊗ s2(0)⊗ . . .⊗ sn(0).

Thus proving the theorem. Details concerning the algorithm
execution are provided in Section V.

Let us now provide a characterization of the convergence
time with respect to a given edge selection processe.

Lemma4 (Convergence Time):Let us consider an edge
selection processe such that∀ t ∃∆t ∈ N, so that the forest
F(t, t + ∆t) is connected. If∃M ∈ N : ∆t < M ∀ t,
then the convergence is reached by any agent at most at time
t̄ = d ·M , whered is the diameter of the spanning treeT .

Proof: The proof of the lemma follows the same argu-
ments of the steady-state convergence proof (Section IV-2)
by assuming that an upper bound is available to the time
required for the forest to be connected. In particular, for sake
of simplicity and with no lack of generality let us assume to
start at timet = 0. Under this assumption, the information
contraction process towards a single agenti described in
Section IV-2 takes in the worst case, i.e., the leaves are the
last agents to perform an aggregation, timet1 = (d/2) ·M . In
the same way, the information propagation process from such
an agenti to all the other agents over the network described
in Section IV-2 takes in the worst case, i.e., one of the leaves
of the previous spanning-tree is the last agent to perform an
aggregation, timet2 = (d/2) ·M . Therefore, the overall time
required to the algorithm to converge in the worst case scenario
is ttot = t1 + t2 = d ·M .
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As far as the computational complexity of the proposed
algorithm is concerned, from the single agent perspective,each
time an aggregation is performed the following operations have
to be carried out: 1) Novelty extraction, 2) BBAs aggregation.
Since, these two operations have the same computational
complexity, the first being the inverse of the second, as proven
in Lemma (1), the asymptotic computational complexity of
the interaction ruleR is of the same order as for the Smets
aggregation. Regarding the memory occupancy, each agent
should be able to store the common BBA for each of its
neighbors. Thus in the worst-case scenario, that is a node
linked to each other one, the memory requirement is of the
order of the number of agentsn.

V. NETWORKED TBM - STATIC SCENARIO: AN EXAMPLE

In the following, the classification problem introduced in
Section III is reviewed. Two possible classes of targets,
e.g., “cars” or “trucks” (“a” or “b” in the following), are
considered. Hence the following frame of discernment is
definedΩ = {a, b} and the following power-set is obtained,
Γ = {∅, a, b, {a, b}}. The classification task is supposed to be
carried out by a system composed of5 agents. The aggregated
sensor readings provided by the agents on the classes are
expressed by the BBAs detailed in Table II.

Table III depicts the result of the centralized aggregation
schema detailed in Definition 5. In particular, according to
the knowledge about the class of targets obtained, the system
classifies the target as a truck.

Let us now consider the distributed TBM aggregation
schema described in Section IV. Figure 4 depicts the multi-
agent system where the solid (black) lines describes the
network topologyG, while the dashed (red) lines represents
the spanning treeT computed in a distributed fashion by the
agents.

Fig. 4. Multi-Agent system: solid (black) lines represent the network
topologyG, dashed (red) lines describe the spanning treeT .

Table IV describes the adopted edge sequence as output of
the selection process. Note that, only collaborations among
agents which augment their common knowledge, i.e., the
novelty is not the neutral elementn at least for one of the
two agents, have been considered. This allows the system
to converge after only9 steps which is significantly lower
compared to the upper bound provided in Lemma 4 where
d = M = 4. This can be explained by the fact that while
the upper bound has been obtained considering the worst-case
scenario, the numerical example presents an optimized edge
selection process, i.e., for each collaboration at least one of
the two agents augments its knowledge.

Tables XI, XII, XIII show the result of the distributed data
aggregation process based upon the local interaction rule given
in Theorem 1. In particular, the multi-agent system converges

towards the same knowledge about the class of targets as for
the centralized aggregation schema. Thus each agent correctly
classifies the target as a truck.

Note that, as pointed out in Section III, the straightforward
application of the Smets operator would lead to a wrong target
classification, i.e., different from the centralized one given
in Definition 5, if the edge selection process described in
Table IV were considered. This is due to the fact that starting
from time t = 5 agents are required to collaborate more than
once, thus the information brought by these nodes would be
erroneously considered several times. This can be viewed by
comparing the last two columns of Tables IX, X, XI, XII, XIII,
where the result of the aggregation for both the proposed local
interaction rule and the Smets operator are given.

Regarding the memory load, by assuming each mass can
be represent with a double (4 bytes in our representa-
tion), the memory occupancy for each agent is equal to
4 x 2 x 8 = 64 bytes, where2 is the maximum number of
neighbors in the spanning-treeT and 8 is the cardinality of
the power-setΓ.

Set # Agent 1 Agent 2 Agent 3 Agent 4 Agent 5

∅ 0 0 0 0 0
{a} 0.1 0.2 0.1 0.2 0.3
{b} 0.8 0.7 0.8 0.7 0.4

{a, b} 0.1 0.1 0.1 0.1 0.3

TABLE II
OBSERVATIONS COLLECTED BY THE SYSTEM OF5 AGENTS.

Set # Agent 12 Agent 123 Agent 1234 Agent 12345 C-TBM

∅ 0.23 0.341 0.4781 0.63499 0.63499
{a} 0.05 0.011 0.0035 0.00213 0.00213
{b} 0.71 0.647 0.5183 0.36285 0.36285

{a, b} 0.01 0.001 0.0001 0.00003 0.00003

TABLE III
CENTRALIZED TBM: FINAL RESULT AND PROGRESSIVE AGGREGATION.

Time t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9
Edge e12 e13 e24 e35 e12 e13 e12 e35 e24

TABLE IV
EDGE SELECTION PROCESS.

Set # Agent 1 s̄1,2 s̃1,2 Agent 2 s1 ⊕ s2

∅ 0 0 0 0 0.23
{a} 0.1 0 0.1 0.2 0.05
{b} 0.8 0 0.8 0.7 0.71

{a, b} 0.1 1 0.1 0.1 0.01

TABLE V
DISTRIBUTED TBM: T=1,s1 ⊕ s2

Set # Agent 1 s̄1,3 s̃1,3 Agent 3 s1 ⊕ s3

∅ 0.23 0 0.23 0 0.341
{a} 0.05 0 0.05 0.1 0.011
{b} 0.71 0 0.71 0.8 0.647

{a, b} 0.01 1 0.01 0.1 0.001

TABLE VI
DISTRIBUTED TBM: T=2,s1 ⊕ s3
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Set # Agent 2 s̄2,4 s̃2,4 Agent 4 s2 ⊕ s4

∅ 0.23 0 0.23 0 0.407
{a} 0.05 0 0.05 0.2 0.017
{b} 0.71 0 0.71 0.7 0.575

{a, b} 0.01 1 0.01 0.1 0.001

TABLE VII
DISTRIBUTED TBM: T=3,s2 ⊕ s4

Set # Agent 3 s̄3,5 s̃3,5 Agent 5 s3 ⊕ s5
∅ 0.341 0 0.341 0 0.5395

{a} 0.011 0 0.011 0.3 0.0069
{b} 0.647 0 0.647 0.4 0.4533

{a, b} 0.001 1 0.001 0.3 0.0003

TABLE VIII
DISTRIBUTED TBM: T=4,s3 ⊕ s5

Set # Agent 1 s̄1,2 s̃1,2 Agent 2 s1 ⊕ s2 s1 ⊗ s2

∅ 0.341 0.23 0 0.407 0.4781 0.626537
{a} 0.011 0.05 0.1 0.017 0.0035 0.000215
{b} 0.647 0.71 0.8 0.575 0.5183 0.373247

{a, b} 0.001 0.01 0.1 0.001 0.0001 0.000001

TABLE IX
DISTRIBUTED TBM: T=5,s1 ⊕ s2

Set # Agent 1 s̄1,3 s̃1,3 Agent 3 s1 ⊕ s3 s1 ⊗ s3

∅ 0.4781 0.341 0 0.5395 0.63499 0.7385971
{a} 0.0035 0.011 0.2 0.0069 0.00213 0.0001293
{b} 0.5183 0.647 0.7 0.4533 0.36285 0.2612733

{a, b} 0.0001 0.001 0.1 0.0003 0.00003 0.0000003

TABLE X
DISTRIBUTED TBM: T=6,s1 ⊕ s3

Set # Agent 1 s̄1,2 s̃1,2 Agent 2 s1 ⊕ s2 s1 ⊗ s2

∅ 0.63499 0.4781 0 0.4781 0.63499 0.84950
{a} 0.00213 0.0035 0.3 0.0035 0.00213 2.3 · 10−6

{b} 0.36285 0.5183 0.4 0.5183 0.36285 0.15049
{a, b} 0.00003 0.0001 0.3 0.0001 0.00003 3 · 10−10

TABLE XI
DISTRIBUTED TBM: T=7,s1 ⊕ s2

Set # Agent 3 s̄3,5 s̃3,5 Agent 5 s3 ⊕ s5 s3 ⊗ s5

∅ 0.63499 0.5395 0 0.5395 0.63499 0.931736
{a} 0.00213 0.0069 0.2 0.0069 0.00213 1.6 · 10−8

{b} 0.36285 0.4533 0.7 0.4533 0.36285 0.068263
{a, b} 0.00003 0.0003 0.1 0.0003 0.00003 9 · 10−14

TABLE XII
DISTRIBUTED TBM: T=8,s3 ⊕ s5

Set # Agent 2 s̄2,4 s̃2,4 Agent 4 s2 ⊕ s4 s2 ⊗ s4

∅ 0.63499 0.407 0.28 0.407 0.63499 0.913315
{a} 0.00213 0.017 0.09 0.017 0.00213 4.2 · 10−8

{b} 0.36285 0.575 0.6 0.575 0.36285 0.086684
{a, b} 0.00003 0.001 0.03 0.001 0.00003 3 · 10−13

TABLE XIII
DISTRIBUTED TBM: T=9,s2 ⊕ s4

VI. D ISTRIBUTED DATA AGGREGATIONV IA NETWORKED

TBM - DYNAMIC SCENARIO

In this section a local interaction ruleR′ to perform
distributed TBM data aggregation, in case of dynamic obser-
vations, is described. The following assumption on the storage
on the storing capabilities of an agent are made:

Assumptions2:
In this framework, each agenti can handle the storing of the
following information up to timet:

• si(t) current knowledge;
• s̄i,j(t) common knowledge with agentj so thateij ∈ Ê;
• pi(t) BBA related to the previous observation;
• li(t) BBA related to the latest observation;
For sake of clarity, the following notation will be used

indiscriminately in the rest of the paper:

sc(t) = s̄i,j(t) ss(t) = si(t)⊗ sj(t)

Definition 7 (Combination rules):In a dynamic scenario
each agent can perform two type of data aggregation:

• Local Aggregation performed by a single agent.
• Dynamic Aggregation performed by a couple of agents.

A. Local Aggregation

An agent requires a local aggregation any time a new
observation is available. To this end, let us suppose that the
initial observation is made at timet = 0 and a new one
is collected at timêtk, k ∈ N. In this context, an agent
must perform alocal aggregationin order to remove the past
observation from its current knowledge and add the new one.
This can be achieved by first computing the novelty between
the current knowledgesi and the past observationpi and then
aggregating this noveltỹspi with the latest observationli. In
this way, the updated current knowledge of the agent will take
into account only the information coming from the previous
collaboration with its neighbors and its last observation,that
is:

si(t̂k) = s̃pi (t̂k)⊗ li(t̂k) (14)

B. Dynamic Aggregation Between Agents

In order to perform the dynamic aggregation between two
agents the operator~⊕ must be introduced.

Definition 8 (R′ - operator ~⊕ ):
Let R′ be a rule to combine the basic belief assignments for
two agents(i, j) such thateij ∈ Ê as follows:

si(t+ 1) = si(t) ~⊕ sj(t) = ˜(si(t)⊗ sj(t))
c

=
{

m̃c
s(t, γa)

}

, ∀γa ∈ Γ
(15)

wherem̃c
s(t, γa) is defined as in eq. (6) with respect toss(t)

andsc(t).
Remark2: A few remarks are now in order:

1) A simple consequence of Lemma 1 with respect to the
operator~⊕ is that the aggregation of two statesi andsj such
that sj = s̄i,j is:

sj(t+ 1) = ˜(sj(t)⊗ si(t))
c

= ˜(sj(t)⊗ si(t))
j

= si(t)

2) According to the operator~⊕, two statessi(t) andsj(t) are
equal if and only if they are completely described by their
common knowledge, i.e.si(t) = sj(t) = s̄i,j(t) = sc(t).

Therefore, the aggregation rule used for the dynamic sce-
nario turns out to be the same as in the static scenario if the
agents do not collect new observations over time.
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At this point, in order to prove the convergence of the
proposed algorithm some properties concerning the local in-
teraction ruleR′ must be introduced.

Lemma5 (~⊕ properties): The local interaction rule~⊕ de-
fined according to eq. (7) has the following properties:

si ~⊕ sj = sj ~⊕ si (commutativity)
si ~⊕ si = si if s̄i,j = si (idempotence)

(si ~⊕ sj) ~⊕ sk = si ~⊕ (sj ~⊕ sk) (associativity)
(16)

for each triple(i, j, k) such thateij , ejk ∈ Ê.
Proof: The properties can be proven by exploiting the

Lemma 1 and the definition given in eq. (7). Furthermore,
let us consider the more general case for which agents might
have already performed an aggregation with each other. In
particular, according to Lemma 1, the statesi of an agenti
with respect to any of its neighborsj can be always written
as:

si(tm) = li(tm)⊗ sN (i)\j(tm)⊗ lj(tq)⊗ sN (j)\i(tq)

= vji (tm)⊗ vij(tq)

where sN (i)\j(tm), sN (j)\i(tq) describe respectively all the
aggregated data coming from the neighborhood of agenti
(at time tm) and j (at time tq) excluding each other, and
vph(tk) = lh(tk)⊗ sN (h)\p(tk).

• Commutativity:
Let us consider two agents(i, j), then from Definition 8
we have:

si ~⊕sj = ˜(si ⊗ sj)
c

= ˜(sj ⊗ si)
c

= sj ~⊕si

where
(

si ⊗ sj
)

=
(

sj ⊗ si
)

comes from the commuta-
tivity property of the Smets operator⊗.

• Idempotence:
Let us consider two agents(i, j) that a given timet have
their BBA equal to their common knowledge (acquired
at a certain instant of time previous the timet), that is
si = sj = s̄i,j , then we have

si ~⊕ sj = ˜(si ⊗ sj)
c

= ˜(si ⊗ sj)
j

= si

• Associativity:
Let us consider a triplet of agents(i, j, k) such that
eij , ejk ∈ Ê. Furthermore, according to Lemma 1, let
us assume the current state of the three agents at timetm
to be written as follows:

si = vji (tm)⊗ vij(tq)

sj = vji (tq)⊗ lj(tm)⊗ sN (j)\i,k(tm)⊗ vjk(tq′)

= vji (tq)⊗ vi,kj (tm)⊗ vjk(tq′)

sk = vjk(tm)⊗ vkj (tq′)

and the common knowledge describing previous aggre-
gation among these agents to be written as:

s̄i,j(tq) = sc′ = vji (tq)⊗ vij(tq)

s̄j,k(tq′ ) = sc′′ = vkj (tq′)⊗ vjk(tq′).

Then we have:

(

si (tm) ~⊕ sj(tm)
)

~⊕ sk(tm) =

=
˜(

v
j
i (tm)⊗ vij(tq)⊗ v

j
i (tq)⊗ v

i,k
j (tm)⊗ v

j

k(tq′)
)

c′

~⊕ sk(tm)

=
(

v
j

i (tm)⊗ v
i,k

j (tm)⊗ v
j

k(tq′)
)

~⊕ sk(tm)

= sij(tm) ~⊕ sk(tm)

=
˜(

v
j

i (tm)⊗ v
i,k

j (tm)⊗ v
j

k(tq′)⊗ sk(tm)
)

c′′

=
˜(

v
j
i (tm)⊗ v

i,k
j (tm)⊗ v

j

k(tq′)⊗ v
j

k(tm)⊗ vkj (tq′)
)

c′′

= v
j

i (tm)⊗ v
i,k

j (tm)⊗ v
j

k(tm)

where the equivalencēsij,k = s̄j,k comes from the
independence of the knowledge between nodei and k
with respect toj, due to the properties of the topology
structure of the communication graph, i.e., a spanning
treeT . And:

si (tm) ~⊕
(

sj(tm) ~⊕ sk(tm)
)

=

= si(tm) ~⊕
˜(

v
j
i (tq)⊗ v

i,k
j (tm)⊗ v

j

k(tq′)⊗ v
j

k(tm)⊗ vkj (tq′)
)

c′′

= si(tm)~⊕
(

v
j
i (tq)⊗ v

i,k
j (tm)⊗ v

j

k(tm)
)

= si(tm)~⊕sjk(tm)

=
˜(

si(tm)⊗ v
j
i (tq)⊗ v

i,k
j (tm)⊗ v

j

k(tm)
)

c′

=
˜(

v
j

i (tm)⊗ vij(tq)⊗ v
j

i (tq)⊗ v
i,k

j (tm)⊗ v
j

k(tm)
)

c′

= v
j
i (tm)⊗ v

i,k
j (tm)⊗ v

j

k(tm)

where the equivalencēsi,jk = s̄i,j comes again from the
independence of the knowledge between nodei and k
with respect toj, due to the properties of the topology
structure of the communication graph, i.e., a spanning
treeT .

In a dynamic scenario, referring to Definition (5), let us
assume that every so often (t = t̂k, k ∈ N), one or
more agents perform an update of their observation. As a
consequence, the aggregated BBA can be updated accordingly
as follows:

s1 2 ... n(t̂k) = l1(t̂k)⊗ l2(t̂k)⊗ . . .⊗ ln(t̂k) (17)

where li(t̂k) describes the BBA related to the most recent
observation available to the agenti.

For the dynamic scenario, the convergence of the proposed
gossip algorithm towards the basic belief assignment, as inthe
centralized aggregation schema, is guaranteed by the following
theorem.

Theorem2 (Distributed Dynamic TBM):Let us consider a
gossip algorithm{S,R′, e} over a spanning-treeT = {V, Ê}
with S and R′ defined respectively as in Definition 3 and
Definition 8. Let us assume each agenti at time t= 0
provides an independent observation described by the basic
belief assignmentsi(0) = {mi(0, γa}, γa ∈ Γ}. Furthermore,
let us assume that every so often (t = t̂k, k ∈ N), one or more
agents perform an update of their observation. Ife is such that
∀ t ∃∆t ∈ N so that the time-variant forestF(t, t+∆t) is
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connected, then for somek there will exist a timet = t̄k so
that:

si(t
′) = l1(t̂k)⊗ l2(t̂k)⊗ . . .⊗ ln(t̂k) ∀ t

′ ∈ [ t̄k, t̂k+1 ) (18)

whereli(t̂k) describes the most recent observation available
to the agenti.

Proof: The proof of the theorem consists of four steps.
First, it will be proven that a steady-state exists for the
proposed gossip algorithm. Successively, it will be shown that
each agent by applying the aggregation operator~⊕ can inject
the updated observations into the network while transparently
removing the previous ones. Then, by exploiting this property,
it will be proven the convergence and finally, it will be shown
that the steady-state is unique and equal to the result of the
centralized aggregation schema given in eq. (17).

Note that, for the existence, convergence and uniqueness
analysis, the interval of time[t̂k, t̂k+1) between two con-
secutive observations update is supposed to be long enough
with respect to the nature of the edge selection processe.
This allows to guarantee that each agent can perform all the
aggregations required to reach the steady-state. Necessary and
sufficient conditions concerning the length of time interval
with respect to the edge selection processe are given in
Lemma 6.

1) Steady-State Existence:In order to prove the existence
of a steady-state for the proposed gossip algorithm, it willbe
shown that a sufficient and necessary condition is that all the
agents share the same states̄. According to the interaction rule
given in eq. (7), this imply that all the agents will have the
same common knowledgesc. Therefore, the statēs is itself
a steady state for the multi-agent system. Furthermore, letus
prove by contradiction this condition to be necessary as well.
To this end, let us suppose two agentsi and j have reached
two different steady states over the network, that issi(t) = s′

and sj(t) = s′′. Therefore, according to the definition of a
spanning-tree, there will always exist a (unique) path connect-
ing the two nodesi and j. Let us now consider for such a
spanning-treeT the pathpij = {vi, vk∈Ni

, . . . , vh∈Nj
, vj}

connecting these two agentsi and j. In particular, as agenti
has reached the states′, this implies that its neighbork must
be sending a state which is equal to their common knowledge.
Furthermore, since agentk itself has reached a steady-state,
agenti must be sending a state which is equal to their common
knowledge. However, according to the Remark 2 this implies
that both agents have the same state, that iss′. The same
argument can be applied to the agentj and its neighborh
with respect to the steady states′′.

Now, by iterating this reasoning from both ends of the path
there will be a cut where all the nodes on a side will have
reached the same steady-states′ as agenti, while on the other
side all the agents will have reached the same steady-states′′

as agentj. Let us callx andy the two agents on the boundaries
of the cut. Since,x and y have boot reached a steady state,
s′ ands′′ respectively, they must be sending a state which is
equal to their common knowledge to each other. However, the
two steady statess′ ands′′ have been supposed to be different,
so the two agentsx andy cannotbe sending a state equal to
their common knowledgesc to each other. Indeed, this would

be possible only if the two steady statess′ and s′′ were the
same steady statēs, which gives the absurd. Therefore a steady
state holds if and only ifsi = sj ∀i, j ∈ N .

2) Observations Propagation:Let us consider two agents
(i, j) such thateij ∈ Ê and let us assume a collaboration was
performed at timet = tq. The updated states can be written
as:

si(tq) = li(tq)⊗ sN (i)\j(tq)⊗ lj(tq)⊗ sN (j)\i(tq)

= vji (tq)⊗ vij(tq)

sj(tq) = lj(tq)⊗ sN (j)\i(tq)⊗ li(tq)⊗ sN (i)\q(tq)

= vij(tq)⊗ vji (tq),

wheresN (i)\j(tq), sN (j)\i(tq) describe respectively all the ag-
gregated data coming from the neighborhood of agenti andj
excluding each other, andvph(tk) = lh(tk) ⊗ sN (h)\p(tk).
Furthermore the common knowledge at timet = tq between
the two agents can be written assc(tq) = vij(tq) ⊗ vji (tq),
Now, let us consider a timet = tm, tm such that the two
agents have performed further aggregations (but not with each
other) and an update of their observation. Their current state
at time t = tm can be written as follows:

si(tm) = li(tm)⊗ sN (i)\j(tm)⊗ lj(tq)⊗ sN (j)\i(tq)

= vji (tm)⊗ vij(tq)

sj(tm) = lj(tm)⊗ sN (j)\i(tm)⊗ li(tq)⊗ sN (i)\q(tq)

= vij(tm)⊗ vji (tq).

Now, let us assume that the two agents perform an aggregation
at time t = tm + 1. Their current state can be updated
accordingly as follows:

si(tm + 1) = si(tm)~⊗sj(tm)

= ˜(

vji (tm)⊗ vij(tq)⊗ vij(tm)⊗ vji (tq)
)

c

= vji (tm)⊗ vij(tm)

sj(tm + 1) = sj(tm)~⊗si(tm)

= ˜(

vij(tm)⊗ vji (tq)⊗ vji (tm)⊗ vij(tq)
)

c

= vij(tm)⊗ vji (tm)

where the common knowledgesc(tq) = vij(tq) ⊗ vji (tq),
which represents both their previous observations and their
neighbors previous observations, is removed. Note that, after
the aggregation the common knowledge is set to the current
state of the two agentssc(tm + 1) = vji (tm) ⊗ vij(tm).
Therefore, anytime two agents perform an aggregation only
the most recent observation of any agent is propagated over
the network.

3) Steady-State Convergence:In order to prove the conver-
gence of the proposed algorithm towards a steady-state, letus
consider an interval of time[t0, t0 + ∆t0], with t0 = t̂k, for
which the forestF(t0, t0+∆t0) is connected. This implies that
some agents play the role of leaves for the resulting spanning-
tree T . Indeed, any further aggregation of these agents with
their fathers will not change the state of the fathers. This
is due to the fact that all the knowledge brought by the
leaves is already available to the fathers in their common
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knowledge (see Remark 2). Furthermore, according to the
Observation Propagation proof (Section VI-B2) only the most
recent observations will be sent by the leaves to the fathers.
Now, let us consider a new interval of time[t1, t1 + ∆t1]
with t1 = t0 + ∆t0 + 1. We can use the same argument
with respect to a new spanning-treeT ′ obtained by removing
the leaves from the original spanning-treeT . In fact, there
are some other agents which play the role of leaves for the
new spanning-treeT ′ in the time interval[t1, t1 +∆t1]. This
implies again that (at least) these agents will always send the
common knowledges′c for any further aggregation to their
fathers. At this point, since the number of agents is finite, by
repeating this reasoning it will exist an interval[th, th+∆th]
after which the residual spanning treeT h will be composed
of only one agenti, whose statēs is the aggregation of all
the most recent observationsavailable (at timêtk) over the
network. Let us now consider, a new spanning treeT h+1

composed of such an agenti and all of its one-hop neighbors.
There will exist an interval[th+1, th+1 +∆th+1] after which
the forestF(th+1, th+1+∆th+1) is connected. As a result, all
the agents belonging to this spanning tree will have reached
the same knowledge as the agenti. This is due to the fact that
for any aggregation, agenti will be the only to have its state
different from the common knowledge. Therefore according
to the Remark (2), the other agents will reach its states̄. By
iterating the same reasoning, there will be an interval of time
[t2h, t2h+∆t2h] for which the related spanning treeT 2h will
coincide with the original spanning treeT . This implies that
all the agents will be reached the same states̄ as the agenti.
Therefore, according to the proof of existence,s̄ is a steady
state for the multi-agent system.

4) Steady-State Uniqueness:In order to prove the unique-
ness of the steady state, it will be shown that any sequence of
aggregations over the network, where each agent is considered
at least once, is always the~⊕ combination of the observations
set at timet = t̂k, that is:

s̄(t′) = s1(t̂k) ~⊕ s2(t̂k) ~⊕ . . . ~⊕ sn(t̂k), ∀ t′ ∈ [t̄k, t̂k+1).

This can be proven by recalling the properties given in
Lemma 5 and the result concerning the proof of the Ob-
servation Propagation (Section VI-B2) along with the proof
of Steady-State Convergence (Section VI-B3). In fact, the
observation propagation result guarantees that, anytime two
agents perform an aggregation, only the most recent observa-
tion of any agent is propagated over the network. Furthermore,
according to the convergence proof, when a steady-state is
reached over the network, it embodies all the most recent
observations available up to timetk. Finally, due to Lemma??,
the particular sequence of aggregations does not affect the
result due to the commutativity and associativity properties,
while the presence of several occurrences of the same state can
be neglected due to the idempotence property. As a result, the
combination of the observations set at timet = t̂k is achieved,
that is:

s̄(t) = l1(t̂k) ~⊕ l2(t̂k) ~⊕ . . . ~⊕ ln(t̂k),

that is the same result as in the centralized aggregation schema
given in eq. (17). Details concerning the algorithm execution

are provided in Section VII.
Remark3: A few important remarks are now in order:

1) The gossip algorithm described in the dynamic case
allows the agents to “track” the steady-state

(

given by
eq. (17)

)

. In fact, by applying the local aggregation rule
given in eq. (14) each agent can replace the previous
observation with the latest one on its own state, and by
applying the dynamic aggregation rule given in eq. (7) if
two agents perform an aggregation only the most recent
observation of any agent is propagated over the network.

2) The convergence capability of the proposed algorithm
depends on whether the time interval between two
consecutive observations update is sufficiently long with
respect to the nature of the edge selection processe.
However, even if some steady-states are missed, the
agents still keep tracking the most recent one.

In the following, an analysis to derive an upper-bound of
the convergence time for the worst-case scenario is proposed.

Lemma6 (Convergence Time):Let us consider an edge
selection processe such that∀ t ∃∆t ∈ N so that the forest
F(t, t+∆t) is connected. If∃M ∈ N : ∆t < M ∀ t, then the
multi-agent system can always reach the convergence towards
a steady-state if the following condition holds between two
consecutive observations update:

t̂k+1 ≥ t̂k + d ·M, ∀ k ∈ N (19)

whered is the diameter of the spanning treeT .
Proof: The proof follows the same argument of the

steady-state convergence proof (Section VI-B3) by assuming
that an upper bound is available to the time required for
the forest to be connected. Furthermore, let us assume that
at time t = t̂k, one or more agents have performed an
observation update over the network. Under this assumption,
the information contraction process towards a single agenti
described in Section VI-B3 takes in the worst case, i.e., the
leaves are the last agents to perform an aggregation, time
t1 = (d/2) · M . In particular, the state of such an agent
i represents the aggregation of the latest set of observation
available over the network up to timetk. In the same way, the
information propagation process from such an agenti to all
the other agents over the network described in Section VI-B3
takes in the worst case, i.e., one of the leaves of the previous
spanning-tree is the last agent to perform an aggregation,
time t2 = (d/2) · M . Therefore, the overall time required
to the algorithm to converge in the worst case scenario is
ttot = t1 + t2 = d · M . Note that, in the case an update is
performed by any agent before the contraction process ends,
i.e., t̂k+1 < t̂k+d·M , the state spread by agenti will no longer
represent the aggregation of the most recent set of observations
available over the network, and therefore at the end of the
propagation process, no steady-state will be reached for the
interval [t̂k, tk+1).

Note that Lemma 6 provides only a theoretical characteriza-
tion of the convergence time for the proposed gossip algorithm.
However, in a real scenario agents perform the update of their
observations independently and asynchronously, therefore no
control can be provided for the convergence of the algorithm



13

apart from the design of a “smart” edge selection process able
to keep the upper-boundM as small as possible.

As far as the computational complexity of the proposed
algorithm for the dynamic scenario is concerned, it should
be noticed that from the single agent perspective, the same
operations as for the static scenario have to be carried out al-
though with an inverse order: 1) BBAs aggregation, 2) Novelty
extraction. Therefore, the same considerations hold. Regarding
the memory occupancy, two additional BBAs, namelypi(t)
and li(t) have to be stored by each agent, compared to the
static scenario. Therefore, also in this case, in the worst-case
scenario the memory requirement is of the order of the number
of agentsn.

VII. N ETWORKED TBM - DYNAMIC SCENARIO: AN

EXAMPLE

In the following, an extension of the example given in
Section V where agents collect new observations over the time
is proposed. The aggregated sensor readings on the classes of
target provided by the agents are expressed by the BBAs given
in Table XIV. Note that, an observation update is performed
by agents3 and4 at timet = 5. As a consequence, according
to eq. (17) two different aggregated knowledge are available
for the centralized aggregation schema, namely one up to time
t = 5 and the other one fort ≥ 5. In particular, Table XV
shows the aggregated knowledge about the class of targets for
t ≥ 5. According to it, the system classifies the target as a
truck.

Set # l1(0) l2(0) l3(0) l4(0) l5(0) l3(5) l4(5)

∅ 0 0 0 0 0 0 0
{a} 0.1 0.2 0.1 0.2 0.3 0.1 0.1
{b} 0.8 0.7 0.8 0.7 0.4 0.7 0.8

{a, b} 0.1 0.1 0.1 0.1 0.3 0.2 0.1

TABLE XIV
OBSERVATIONS COLLECTED BY THE SYSTEM OF5 AGENTS.

Set # s12 s123 s1234 s12345 CTBM
∅ 0.23 0.336 0.4134 0.58966 0.58966

{a} 0.05 0.016 0.0034 0.0021 0.0021
{b} 0.71 0.646 0.583 0.40818 0.40818

{a, b} 0.01 0.002 0.0002 0.00006 0.00006

TABLE XV
CENTRALIZED TBM: FINAL RESULT AND PROGRESSIVE AGGREGATION,

USING THE NEW OBSERVATION FOR AGENT3 AND 4.

The data aggregation is carried out over the spanning tree
T = {V, Ê} with Ê = {e12, e13, e35, e24}. In particular,
Table XVI depicts the set of selected edges. Note that, the
convergence cannot be reached by the multi-agent system for
the initial set of observations (up to timet = 0) due to the
update of the agents observations at timet = 5. Furthermore,
these updates prevent also the application of the local update
rule described in Theorem 1 since it does not allow to remove
the previous observations from the current knowledge of the
agents. Nevertheless, as explained in Section VI, the local
update rule given in Theorem 2 can be used instead.

Note that, by applying the local update rule given in Theo-
rem 2, the agents can track the current steady-state regardless
of the observations update, hence as pointed out in Remark 3
no re-initialization is required for the system. As a matter
of fact, all the agents reaches the steady-state regardlessof
the update performed by agents3 and4. In particular, agents
1 and 2 reach the steady-state at timet = 9, as shown in
Table XXVI. Obviously, further communications up to time
t = 12 are required to propagate this result over the network,
as shown in Tables XXVII, XXVIII and XXIX.

Set # s1 s2 s1 ⊗ s2 s̄1,2 s1, s2
∅ 0 0 0.23 0 0.23

{a} 0.1 0.2 0.05 0 0.05
{b} 0.8 0.7 0.71 0 0.71

{a, b} 0.1 0.1 0.01 1 0.01

TABLE XVII
DYNAMIC DISTRIBUTED TBM: T=1,s1 ~⊕ s2

Set # s1 s3 s1 ⊗ s3 s̄1,3 s1, s3
∅ 0.23 0 0.341 0 0.341

{a} 0.05 0.1 0.011 0 0.011
{b} 0.71 0.8 0.647 0 0.647

{a, b} 0.01 0.1 0.001 1 0.001

TABLE XVIII
DYNAMIC DISTRIBUTED TBM: T=2,s1 ~⊕ s3

Finally, according to Theorem 2 the multi-agent system
converges towards the same knowledge about the class of
targets as for the centralized aggregation schema. Thus each
agent correctly classifies the target as a truck. In addition, it
should be noticed how the mass of the empty-setm(∅) has
a high value to underline a contradiction of the initial agents
observations, as detailed in Table XIV.

Set # s2 s4 s2 ⊗ s4 s̄2,4 s2, s4
∅ 0.23 0 0.407 0 0.407

{a} 0.05 0.2 0.017 0 0.017
{b} 0.71 0.7 0.575 0 0.575

{a, b} 0.01 0.1 0.001 1 0.001

TABLE XIX
DYNAMIC DISTRIBUTED TBM: T=3,s2 ~⊕ s4

Set # s3 s5 s3 ⊗ s5 s̄3,5 s3, s5
∅ 0.341 0 0.5395 0 0.5395

{a} 0.011 0.3 0.0069 0 0.0069
{b} 0.647 0.4 0.4533 0 0.4533

{a, b} 0.001 0.3 0.0003 1 0.0003

TABLE XX
DYNAMIC DISTRIBUTED TBM: T=4,s3 ~⊕ s5

VIII. C ONCLUSIONS

In this work an extension of the Transferable Belief Model
to a distributed multi-agent context has been presented. Two
different scenarios, namely static scenario and dynamic sce-
nario, have been considered. A distributed protocol has been
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Time t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10 t=11 t=12
Edge e12 e13 e24 e35 u.o. e24 e35 e13 e12 e24 e13 e35

TABLE XVI
EDGE SELECTION PROCESS. UPDATED OBSERVATIONS AT T=5 (U.O.)

Set # s3 p3 s̃
p3
3

l3 s3

∅ 0.5395 0 0.463 0 0.5362
{a} 0.0069 0.1 0.033 0.1 0.0102
{b} 0.4533 0.8 0.501 0.7 0.453

{a, b} 0.0003 0.1 0.003 0.2 0.0006

TABLE XXI
DYNAMIC DISTRIBUTED TBM: T=5, LOCAL AGGREGATION ON AGENT3’S

KNOWLEDGE.

Set # s4 p4 s̃
p4
4

l4 s4

∅ 0.407 0 0.23 0 0.341
{a} 0.017 0.2 0.05 0.1 0.011
{b} 0.575 0.7 0.71 0.8 0.647

{a, b} 0.001 0.1 0.01 0.1 0.001

TABLE XXII
DYNAMIC DISTRIBUTED TBM: T=5, LOCAL AGGREGATION ON AGENT4’S

KNOWLEDGE.

Set # s2 s4 s2 ⊗ s4 s̄2,4 s2, s4
∅ 0.407 0.341 0.626537 0.407 0.341

{a} 0.017 0.011 0.000215 0.017 0.011
{b} 0.575 0.647 0.373247 0.575 0.647

{a, b} 0.001 0.001 0.000001 0.001 0.001

TABLE XXIII
DYNAMIC DISTRIBUTED TBM: T=6,s2 ~⊕ s4

Set # s3 s5 s3 ⊗ s5 s̄3,5 s3, s5
∅ 0.5362 0.5395 0.79416946 0.5395 0.5362

{a} 0.0102 0.0069 0.00007758 0.0069 0.0102
{b} 0.453 0.4533 0.20575278 0.4533 0.453

{a, b} 0.0006 0.0003 0.00000018 0.0003 0.0006

TABLE XXIV
DYNAMIC DISTRIBUTED TBM: T=7,s3 ~⊕ s5

Set # s1 s3 s1 ⊗ s3 s̄1,3 s1, s3
∅ 0.341 0.5362 0.7059382 0.341 0.5362

{a} 0.011 0.0102 0.000129 0.011 0.0102
{b} 0.647 0.453 0.2939322 0.647 0.453

{a, b} 0.001 0.0006 0.0000006 0.001 0.0006

TABLE XXV
DYNAMIC DISTRIBUTED TBM: T=8,s1 ~⊕ s3

Set # s1 s2 s1 ⊗ s2 s̄1,2 s1, s2
∅ 0.5362 0.341 0.7059382 0.23 0.58966

{a} 0.0102 0.011 0.000129 0.05 0.0021
{b} 0.453 0.647 0.2939322 0.71 0.40818

{a, b} 0.0006 0.001 0.0000006 0.01 0.00006

TABLE XXVI
DYNAMIC DISTRIBUTED TBM: T=9,s1 ~⊕ s2

proposed for each scenario along with a theoretical character-
ization of its convergence properties.

Multi-agent systems represent an ideal abstraction of actual
networks of mobile robots or sensor nodes that are envisioned
to perform the most various kind of tasks. Therefore, we

Set # s1 s2 s1 ⊗ s2 s̄1,2 s1, s2
∅ 0.58966 0.341 0.73543462 0.341 0.58966

{a} 0.0021 0.011 0.00002586 0.011 0.0021
{b} 0.40818 0.647 0.26453946 0.647 0.40818

{a, b} 0.00006 0.001 0.00000006 0.001 0.00006

TABLE XXVII
DYNAMIC DISTRIBUTED TBM: T=10,s2 ~⊕ s4

Set # s1 s2 s1 ⊗ s2 s̄1,2 s1, s2
∅ 0.58966 0.5362 0.814799044 0.5362 0.58966

{a} 0.0021 0.0102 0.000023292 0.0102 0.0021
{b} 0.40818 0.453 0.185177628 0.453 0.40818

{a, b} 0.00006 0.0006 0.000000036 0.0006 0.00006

TABLE XXVIII
DYNAMIC DISTRIBUTED TBM: T=11,s1 ~⊕ s3

Set # s1 s2 s1 ⊗ s2 s̄1,2 s1, s2
∅ 0.58966 0.5362 0.814799044 0.5362 0.58966

{a} 0.0021 0.0102 0.000023292 0.0102 0.0021
{b} 0.40818 0.453 0.185177628 0.453 0.40818

{a, b} 0.00006 0.0006 0.000000036 0.0006 0.00006

TABLE XXIX
DYNAMIC DISTRIBUTED TBM: T=12,s3 ~⊕ s5

believe that the proposed techniques make it possible to
effectively apply the TBM in important engineering fields
such as multi-robot systems or sensor networks, where the
distributed collaborations among players is a critical andyet
crucial aspect.

Future work will be mainly focused on the extension of
the proposed technique on more complex topologies such as
graphs with cycles. Indeed, whereas tree-like topologies can
properly represent interaction among static sensors, the use of
cyclic structures better describes the interaction among mobile
units.
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