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Abstract: Sensor networks have become a widely used technology for applications ranging from 
military surveillance to industrial fault detection. So far, the evolution in micro-electronics has 
made it possible to build networks of inexpensive nodes characterised by modest computation 
and storage capability as well as limited battery life. In such a context, having an accurate 
knowledge about nodes position is fundamental to achieve almost any task. Several techniques  
to deal with the localisation problem have been proposed in literature: most of them rely on  
a centralised approach, whereas others work in a distributed fashion. However, a number of 
approaches do require a prior knowledge of particular nodes, i.e. anchors, whereas others can 
face the problem without relying on this information. In this paper, a new approach based on an 
Interlaced Extended Kalman Filter (IEKF) is proposed: the algorithm, working in a distributed 
fashion, provides an accurate estimation of node poses with a reduced computational complexity. 
Moreover, no prior knowledge for any nodes is required to produce an estimation in a relative 
coordinate system. Exhaustive experiments, carried on MICAz nodes, are shown to prove the 
effectiveness of the proposed IEKF. 
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1 Introduction 

A sensor network consists of a collection of nodes deployed 
in an environment that cooperate to perform a task. Each 
node, which is equipped with a set of sensors and radio 
connectivity, shares data to reach the common objective. 

Sensor networks provide a framework in which, 
exploiting the collaborative processing capabilities, several 
problems can be faced and solved in a new fashion. However, 
it comes along with several challenges such as limited 
processing, storage and communication capabilities as well as 
limited energy supply and bandwidth. Performing a partial 
computation locally on each node, and exploiting inter-node 
cooperation, is the ideal way to use sensor networks. 
Unfortunately, this modus operandi is highly constrained by 
the reduced hardware capabilities as well as by the limited 
energy resources that makes communication very expensive 
in terms of life-time for a node. As a consequence, these 
constraints must be taken into account when developing 
algorithms able to operate in a distributed fashion. 

Some basic services, such as time synchronisation or nodes 
localisation, must be provided in order to properly set up a 
sensor network. In fact, basic middle ware services, such as 
routing, often rely on location information, e.g. geographic 
routing (Bose et al., 2001; Stojmenovic, 2002; Kuhn et al., 
2003). Specifically, the localisation problem in sensor networks 
consists of finding out the locations of nodes in regards  
to any topology or metric of interest. This problem turns  
out to be difficult to be solved, in fact Jackson and Jordán 
(2005) and Eren et al. (2004) have proved that a sufficient 
condition for a sensor network to be localisable cannot be 
easily identified, even when considering the availability of 
perfect measurements. Further, several analyses showed that, 
especially when using the Received Signal Strength Indication 
(RSSI), having reliable ranging information is fairly practical 
(Bahl and Padmanabhan, 2000; Whitehouse et al., 2005; 
Yedavalli et al., 2005). 

A taxonomy can be drawn according to the computational 
organisation of localisation techniques: centralised and 
distributed. Centralised algorithms exploit a central computer 
to perform all the complex computations using information 
gathered by nodes. Distributed algorithms dispense the 
computation over the network, allowing each node to perform 
locally and compensating the lack of knowledge through an 
intensive collaborative processing. Both of them have 
advantages and drawbacks: centralised algorithms provide 
good performances but they suffer from structural weakness 
and do not scale very well, whereas distributed ones often 
provide sub-optimal solutions but they are also very robust,  
in terms of resilience, and scalable. 

Doherty et al. (2001) propose the Semidefinite 
Programming Approach (SDP) to solve the localisation 
problem. The idea is to model geometric constraints 
between nodes as Linear Matrix Inequalities (LMIs), then 
use the semidefinite programming theory to solve it. The 
result is a bounding region for each node, representing 
feasible locations where nodes are supposed to be. The idea 
to use a set of convex constraints in order to estimate the 
position of a node is very elegant, but it turns out to be 

inaccurate as constraints do not use precise data range. 
Moreover, the algorithm provides a good estimation only 
when having anchors densely deployed on the boundary  
of the sensor network, a condition that can not always be 
guaranteed. 

Biswas et al. (2006) describe an improved SDP 
approach to deal with noisy distance measurements. The 
idea is to take advantage of an additional technique to 
mitigate the inaccuracy of the solution provided by the SDP 
formulation. The solution provided by the DSP, though not 
accurate, represents by the authors a good starting point for 
a gradient-descent method. Furthermore, numerical results 
show that by means of this approach it is possible to obtain 
a solution very close to the optimal one. This approach 
provides a significant improvement in the performance  
of the SDP-based algorithms. However, the distributed 
formulation is the result of a clusterisation and a local 
execution of the algorithm within each subset. Therefore, 
the computational complexity is merely mitigated reducing 
the number of nodes but the approach still remains almost 
centralised. 

Bulusu et al. (2002) present a RF-based distributed 
localisation method. The idea is to estimate the location of a 
node by simply averaging the positions of all the anchors it 
is connected with. Obviously, the accuracy of the estimation 
is related to the density of anchors deployed in the 
environment and the density required to obtain an 
acceptable estimation is fairly practical. 

Moore et al. (2004) developed an algorithm focused  
on providing more robust local maps. The idea is to split  
the problem into a sub-set of smaller regions in which  
the localisation is performed taking advantage of the 
probabilistic notion of robust quadrilaterals. A robust quad is 
a set of four nodes fully connected by distance measurements 
and well spaced in such a way that no ambiguity can arise, 
even in the presence of noise. The algorithm, which does not 
requires anchors, merges the sub-regions using a coordinate 
system registration procedure. Such a procedure maps local 
reference systems into a global one providing the best fitting 
matrix when in presence of a set of common nodes. 
Moreover, an optional optimisation step can be provided in 
order to refine the local map first. This algorithm, though 
performing well, tends to produce orphans because of both 
the constraints to belong to a quad, and the merging rule. 

In this paper, a new approach based on an Interlaced 
Extended Kalman Filter (IEKF) is proposed. This technique, 
working in a decentralised fashion, provides an accurate node 
estimation with an acceptable computational complexity.  
It does not require any prior knowledge when an estimation 
on a relative coordinate system is desired. Furthermore, it 
turns out to be very robust also in presence of noisy distance 
measurements. 

The paper is organised as follows. In section 2, an 
introduction to the theoretical aspects that have been 
exploited is provided. In section 3, the proposed IEKF  
for sensor networks localisation is described. In section 4,  
the experimental results are proposed. Finally, in section 5, 
conclusions are presented and future perspectives are 
discussed. 
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2 Theoretical background 

2.1 Bayesian framework 
Localisation problem in sensor network can be re-cast into a 
stochastic estimation problem for a system described by the 
following equations 

1( , , )
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x f x u w
z h x v

−=
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 (1) 

where xk is a stochastic variable representing the locations of 
the nodes, uk is the control input, wk and vk are noises that affect 
the system, while f(·) and h(·) are mathematical relations  
that characterise the state transition and the observation zk 
respectively. 

In a probabilistic form, the localisation problem requires 
the probability distribution p(xk|Zk,Uk) to be computed for all 
times k. This probability distribution describes the joint 
posterior density of the sensor locations (xk) given the recorded 
observations (Zk) and control inputs (Uk) up to time k. In 
general, a recursive solution for sensor localisation problem is 
desirable. Such recursive solution can be achieved applying 
Bayes filter (see Figure 1). 

Figure 1 Bayesian filter 
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Starting with an estimate for the distribution p(xk−1|Zk−1,Uk−1) 
at time k − 1, the joint posterior, following a control uk and 
observation zk, is computed using Bayes theorem. This 
computation requires that a state transition model and an 
observation model are defined, describing the stochastic 
effects of the control input and observation respectively. 

In a probabilistic framework, the state transition  
model can be described in terms of the joint prior density 
p(xk|xk−1, uk). Such probability distribution exploits that the 
state transition is assumed to be a Markov process in which 
the next state xk depends only on the immediately preceding 
state xk−1 and the applied control uk and is independent of 
the observations. 

The observation model describes the probability of 
retrieving an observation zk when the sensor locations are 
known, and is generally stated in the form p(zk|xk). 

The localisation algorithm can be implemented in a 
standard two-step recursive prediction (time-update) 
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and correction (measurement update) form 
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Equations (2) and (3) provide a recursive procedure for 
calculating the joint posterior p(xk|Zk, Uk); however, they 
cannot be implemented on a digital computer in their general 

form stated above, as the joint posterior over the state space is 
a density over a continuous space, hence has infinitely many 
dimensions. Therefore, any effective localisation algorithm 
has to resort to additional assumptions. 

A common approach is represented by the use of Kalman 
filter (Kalman, 1960). In this context a linear or linearised 
system model is required 
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where 0 0 0ˆ(0, ), (0, ), ( , )k k k kw Q v R x x P∼ ∼ ∼N N N  are mutually 
independent Gaussian variables for each pair of time instant 
(k, k'). The joint posterior p(xk|Zk,Uk) is modelled by a 
unimodal Gaussian density. The mode of this density ˆ( )kx  
yields the current positions of the nodes, and the variance 
(Pk) represents the current uncertainty. As only these two 
parameters have to be computed to propagate uncertainty, 
there is no need to discretise the state space. In this way the 
prediction becomes 
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while the correction requires the computation of the  
well-known Kalman gain matrix 
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before update the estimate 
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The advantage of Kalman filter lies in its efficiency and in 
the high accuracy that can be obtained; however, it is not 
able to cope with high nonlinear system and multimodal 
distributions. 

Several probabilistic global methods have been proposed 
to overcome these drawbacks relaxing Gaussian assumption 
and introducing the discretisation of the space state. As only 
Kalman filter is used in the sequel here these techniques are 
not reported; however, a complete review can be found in 
Doucet et al. (2001). 

2.2 Interlaced Kalman Filter 
The Interlaced Kalman Filter (IKF) has been proposed  
in Glielmo et al. (1999a) to reduce computational load  
of the estimation process for a class of nonlinear system. 
The fundamental idea of the IKF is derived from the multi-
players dynamic game theory, where the solution of the 
game is such that each player chooses its strategy as optimal 
response to the strategy chosen by the other players. IKF  
is applied to nonlinear system that can be fully linearised  
by means of an appropriate partition of the state space 
variables. In this way IKF consist of p parallel KF 
implementations, each one devoted to estimate only a subset 
of the state variable, while considering the remaining parts 
as deterministic time varying parameters. The linearisation 
error is partially alleviated increasing the noise covariance 
matrices (Glielmo et al., 1999a) 
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For sake of clarity, let us consider a system whose 
system model can be rewritten as (for the first filter i = 1 
and j = 2, while for the second i = 2 and j = 1) 
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where ( ) ( ) ( ) ( )
1( ).i i ij j
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The IKF equations proceed from KF filter equations, as 

is shown in Figure 2. At the k-th step, each subfilter form a 
prediction exploiting both its own estimation and the one of 
the other filter, according with the following equation 
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Figure 2 Interlaced Kalman Filter 
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After prediction step the estimates elaborated by the two 
subfilters are exchanged and used during the update step. 

In this step the observation prediction is formed and 
compared with the measure zk provided by the system 
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where the Kalman gain is computed applying the relation 
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From equations (10) and (13) one can notice that the 

process and measurement noise covariance matrices 
( ) ( )andi i
k kQ R  are suitable increased by addition of positive 

semidefinite quantities that take into account the error 
introduced by the decoupling operation. As shown in 

Roumeliotis and Bekey (2002), indeed, it is easy to 
recognise that the term added to Rk in equation (13) 
represents the cross-correlation between the filters due to 
innovation process, while the term added to ( )i

kQ  in (10) is 
related to the cross-correlation induced by propagation 
process. 

Notice that, in a deterministic framework, sufficient 
conditions that guarantee the local convergence of the 
estimator are established in Glielmo et al. (1999b). 

This formulation of IKF assumes that both substate 
transition mapping and observation mapping, i.e. equations (8), 
depend affinely on their arguments. If one removes these 
assumptions, the algorithm can be still applied by linearising, at 
each step, every subsystem obtaining the IEKF. 

3 IEKF for sensor network 
In this work, a group of N nodes is deployed on a planar 
environment. The nodes, that are supposed to be static, are 
equipped with rangefinder sensors and limited-coverage 
wireless devices in order to share information each others. 

Specifically, if a node i is in the coverage area of the 
node j, they are able to exchange data, i.e. their estimated 
positions and the related uncertainty. In this way node i 
acquires information on its relative position with respect to 
node j, and vice versa. 

Few nodes are equipped with absolute positioning 
devices and there is no need to compute their positions, but 
they play the role of anchors in the network. Therefore their 
locations are assumed to be a priori known. 

Localisation problem is regarded in the framework  
of stochastic estimation. The state to be estimated is 
represented by the positions of the nodes 
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where ( ) ( ) ( )
, ,[ , ]i i i T

k x k y kx p p=  is the position of the i-th node  
in a global reference frame. The measurements of the 
system are the relative distances retrieved by rangefinders. 
All uncertainty sources are assumed to have Gaussian 
distribution. 

An IEKF is applied to estimate the location of the  
nodes. In particular N parallel EKFs are implemented. Each 
one runs on a node and is devoted to estimate its locations. 

3.1 Prediction model 

As mentioned above, the node are assumed to be static 
( ) ( ) ( )

1
i i i

k k kx x w−= +  (15) 

where ( ) 2i
kw ∈R  is a zero mean white noise vector with 

covariance matrix ( ) .i
kQ  

As the state transition of each node does not affect the 
location of the other nodes, in (9b) the term ( )i

kQ�  is not 
computed. 
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3.2 Observation model 
The node observations consist in the rangefinder 
measurements. This last is composed by ni sub-vectors 

( , ) ( ) ( ) ( ) ( ) 2 ( ) ( ) 2
, , , ,( , ) ( ) ( )i j n i j j i j i

k k k x k x k y k y kz h x x p p p p= = − + −  (16) 

where ni is the number of nodes in the viewing area of the  
i-th node and a

in  sub-vectors 
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, ,( , ) ( ) ( )i j a i j i j i
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where a
in  is the number of anchors in the viewing area of 

the i-th node and ( ) ( )( , )j j
x yl l  the position of an anchor.  

It should be noted that ( )ah ⋅  depends on the way in which 
environment map is represented; in our case a list of anchors 
position ( ) ( )( , ).j j

x yl l . 
Due to the nonlinearity of the mapping, the Jacobian of 

the maps ( )nh ⋅  and ( )ah ⋅  have to be used, instead of matrix 
( ) ( )iC ⋅ , in equations (11) and (13). 

When a node detects another one, the covariance update 
is calculated according to equation (11b). As the position of 
an anchor does not affect the location of the node, in 
equation (13) the term ( )i

kR�  is not computed, when the 
measurement detect an anchor. 

3.3 Complexity analysis 
It is well known that the main drawbacks related with 
implementation of localisation algorithms based on EKF 
approaches are due to huge computational load and memory 
occupancy. Indeed, both these quantities scales as ~ O(N2) 
being N the number of the nodes. 

The formulation proposed above seems to be more 
efficient. Memory occupancy scales linearly with the 
number of nodes, i.e. ~ O(N). The computational load is 
distributed on the nodes. For each node i, it depends on the 
number of the nodes ni and the anchors a

in  in the viewing 
area, and scales linearly on this, then as ( ).a

i iO n n+∼  
This is an interesting feature, as, even if the solution 

obtained by means of this algorithm is sub-optimal, it 
represents a trade-off between estimation accuracy and 
computational requirements suitable with the limited 
hardware resources of nodes. 

4 Performance analysis 

Several simulations have been executed in order to 
investigate the underlying properties of the proposed IEKF, 
such as the accuracy and the robustness of the estimation. In 
order to achieve that, a simulation software able to generate 
suitable test cases has been exploited. Particular attention 
has been devoted to susceptibility of the algorithm to 
environmental factors. Specifically, the following aspects 
have been taken into account: 
• density of anchor deployment 
• density of node deployment 
• level of noise of observations 

Figure 3 shows the result when considering a variable number 
of anchors, ranging from 1 to 9, with a fixed number of nodes 
70. According to this result, the algorithm performs better, in 
terms of estimation accuracy and convergence rate, when 
considering an increasing number of anchors. In detail, two 
different behaviours can be recognised, considering anchors 
ranging from 1 to 3 or from 5 to 9. This allows to define an 
optimal number of anchors to be used for a real deployment 
with respect to some parameters of interest. 

Figure 3 Estimation error vs. density of anchor deployment: 
variable number of anchors (from 1 to 9), fixed  
number of nodes (70) (see online version for colours) 
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Figure 4 shows the result when considering a variable 
number of nodes, ranging from 10 to 90, with a fixed 
number of anchors 5. According to this result, the algorithm 
performs slightly better, in terms of convergence rate, when 
considering an increasing number of nodes. However, no 
significant improvement can be noticed in relation of the 
accuracy of the estimation. It can be justified considering 
that the accuracy is mainly related to the number of 
available anchors and the noise of observations. 

Figure 4 Estimation error vs. density of nodes deployment: 
variable number of nodes (from 10 to 90), fixed 
number of anchors (5) (see online version for colours) 
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Figure 5 shows the result when considering a variable level of 
noise with a std ranging from 0.01 m to 0.5 m, with both a 
fixed number of anchors 5 and nodes 30. According to this 
result, the algorithm performs better, in terms of convergence 
rate, when considering a decreasing level of noise. 

Figure 5 Estimation error vs. level of noise of observations: 
variable level of noise (std ranging from 0.01m to 
0.5m), fixed number of anchors (5), fixed number  
of anchors (30) (see online version for colours) 
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5 Experimental results 

In order to prove the effectiveness of the proposed 
decentralised IEKF in a real context, several experiments 
have been carried out in an indoor environment. The network 
has been built with the MICAz (MPR2400) platform,  
a generation of Motes from Crossbow Technology. The 
MPR2400 (2400 MHz to 2483.5 MHz band) uses the  
Chip-con CC2420, IEEE 802.15.4 compliant, ZigBee ready 
radio frequency transceiver integrated with an Atmega128L 
micro-controller. It provides also a flash serial memory, as 
well as a 51 pin I/O connector that allows several sensor and 
data acquiring boards to be connected to it. 

MICAz platform comes along with TinyOS, an  
open-source event-driven operating system designed for  
wireless embedded sensor networks. It features a component-
based architecture which enables rapid innovation and 
implementation while minimising code size as required by  
the severe memory constraints inherent in sensor networks. 
TinyOS component library includes network protocols, 
distributed services, sensor drivers and data acquisition tools, 
all of which can be used as is or be further refined for a 
custom application. 

5.1 Ranging technique 

The mechanism adopted to measure the inter-node distance is 
the Time Difference of Arrival (TDoA). Having each node 
equipped with a speaker and a microphone, TDoA mechanisms  
 
 

compute the distance among nodes by determining the 
difference between the time of arrival of two pulses, 
characterised by a different propagation velocity. 

As previously mentioned, several sensors and acquiring 
boards can be connected to the MICAz (Figure 6) platform.  
In particular, two different boards – the MTS300 and the 
MTS310 – provide a sounder as well as a microphone.  
The sounder is a simple 4 kHz fixed frequency piezoelectric 
resonator, while the microphone can be used either for acoustic 
ranging or for general acoustic recording and measurement. As 
a consequence, according to this hardware availability, RF and 
acoustic (sounder) signals have been exploited. 

Figure 6 Configuration of MICAz device (see online version  
for colours) 
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The proposed ranging technique has been thoroughly 
investigated to understand its accuracy and consequently to 
provide a better evaluation of the algorithm capabilities.  
A significant amount of inter-node distances, considering 
also different environmental conditions, were gathered and 
statistical analyses were performed. In regards to the 
experiments in the lab bench, the ranging technique can 
achieve a precision of around 3 ~ 8 cm with a standard 
deviation of 8 ~ 14 cm according to the measured distance 
(ranging from 20 cm to 2.5 m). 

Moreover, experiments have been performed to verify if 
the mutual orientation of nodes can influence the distance 
measured. For such a reason, two nodes were arranged  
on the floor at the distance of 54 cm from each other. 
Specifically, the distance was manually measured from  
the sounder of the emitter to the microphone of the  
receiver. Afterward, data was collected considering different 
orientations of nodes, in order to simulate a realistic random 
deployment on the ground. 
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Table 1 shows the statistic results using more than  
200 measurements for each configuration. According to the 
experimental results, there are no significant variations on 
the obtained measures when considering different mutual 
orientations. However, as mentioned above, data presents a 
bias as well as a considerable standard deviation that makes 
their use challenging. 

Table 1 Inter-node ranging technique: experimental results 

Exp. Mean value SD 
Node 1 

orientation 
Node 2 

orientation 
1 0.5781 0.1229 π/2 3π/2 
2 0.5734 0.1331 3π/2 0 
3 0.5888 0.1146 3π/2 3π/2 
4 0.5696 0.1052 3π/2 π 
5 0.5933 0.1098 3π/2 π/2 
6 0.6008 0.1230 5π/4 3π/4 
7 0.5972 0.1217 5π/4 π/4 
8 0.5853 0.1136 5π/4 5π/4 
9 0.5683 0.1181 5π/4 5π/2 
10 0.5892 0.1186 5π/4 π 
11 0.5786 0.1239 5π/4 7π/4 
12 0.5668 0.1299 0 0 

The bias and the standard deviation describe the uncertainty 
in the observing process. Several are the sources of such 
uncertainty. First of all, the parameters used to characterise 
the propagation velocity of an acoustic wave in the air  
have been considered fixed, while they change according 
with humidity and temperature. Secondly, the transmission 
protocol introduces a delay, which cannot be taken into 
account, as it is not directly observable. 

5.2 Evaluation criteria 
In order to evaluate the effectiveness of the proposed 
algorithm, two indexes of quality have been considered for 
each node and for each axes: the estimation error, computed 
using the Euclidean distance as a metric and the estimation 
covariance. Moreover, some global indexes have been also 
taken into account: maximum, minimum and average error 
of estimation, the velocity of convergence and finally, the 
percentage of estimation failures. The first two indexes give 
an idea about the local algorithm behaviour, whereas the 
other ones give an evaluation of the global algorithm 
performance. 

In order to have a better evaluation of the proposed 
IEKF, a comparison against two other approaches has been 
carried out. To make the comparison fair, algorithms were 
executed batch under the same conditions exploiting Matlab 
code developed by authors. In particular, 100 trials were  
run for each configuration. Afterwards, the collected data 
were used to compute the indexes of interest previously 
described. 

The first comparison was against a centralised version  
of an Extended Kalman Filter with the aim of better 

understand the advantages as well as the drawbacks that 
arise when decentralising an algorithm. 

The second comparison was against the algorithm for 
Relative Location Estimation proposed in Patwari et al. 
(2003). In detail, it is a Maximum-Likelihood Estimator 
(MLE) that works in a centralised fashion. The Matlab  
code, that is freely available, can be downloaded at 
http://www.eecs.umich.edu/~hero/localize/. 

5.3 Network deployment 

The robotics laboratory of University of “Roma Tre” has 
been exploited for the network deployment. Two different 
configurations have been built and several data acquisitions 
have been done. Moreover, different anchors locations have 
been considered in order to understand the performances 
when changing the configuration. Real locations were 
measured manually taking advantage of the regularity of the 
flooring grid. 

Specifically, Figure 7 describes the first configuration 
that has been considered. Here, three anchors were deployed 
on the border of the network so that optimal nodes coverage 
could be guaranteed. In addition, each node was ideally 
within the communication range of each other so that a full 
connected graph was available. 

Figure 7 First configuration for the network deployment: 
anchors (1–3) were arranged on the border,  
while nodes to be localised (4–8) were randomly 
positioned (see online version for colours) 
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Further, Figure 8 describes the second configuration that  
has been exploited. In this case, anchors (always three)  
were deployed so that collinear arrangements could be 
found and an optimal coverage of the network could not be  
guaranteed. Again, each node was ideally within the range 
of communication of each other in order to have a full 
connected graph. 
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Figure 8 Second configuration for the network deployment: 
anchors (1–3) as well as nodes to be localised (4–10) 
were almost randomly arranged (see online version  
for colours) 
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5.4 IEKF vs. EKF 

Here a comparison of the proposed Interlaced Extended 
Kalman Filter (EKF) against a centralised Extended Kalman 
Filter (IEKF) is provided. 

In regards to the first configuration shown in Figure 7, 
the results of the centralised and distributed algorithms 
averaged over 100 trials are collected in Table 2. Here a 
synoptic comparison between the two approaches can be 
found. According to the accuracy of available data, both 
algorithms are able to localise all nodes within the network 
with similar performances. 

Table 2 Statistical analysis for the first configuration:  
indexes of quality 

Conf. 1 EKF IEKF 

Max Error [m] 0.1104 0.1490 
Min Error [m] 0.0132 0.0172 
Mean Error [m] 0.0619 0.0715 
Converg. Rate 39 28 
% Failure 0 0 

The similarity of performances can be related to the  
good coverage of the network provided by this anchors 
deployment. In fact, such a deployment is able to make up 
the lack of knowledge for the decentralised algorithm with a 
more significant set of data. 

As one can expected, EKF performs slightly better, 
especially in terms of minimum, maximum and average error. 

This behaviour can be easily explained with the different 
amount of data available for the two algorithms as well as 
with the more complete interpretation of data typical of a 
centralised approach, that takes advantage from the complete 

knowledge of cross-correlation terms. The maintenance of 
these terms increases the convergence rate of the EKF that 
results slower than the one of the IEKF. 

From a complexity point of view, as explained in Section 3.3, 
the IEKF presents a reduced memory occupancy. Due to the 
small number of nodes involved in the localisation process, 
the differences on the computational load cannot be 
appreciated, as a full update of centralised algorithm takes 
more or less the same time of a full update of IEKF, as 
reported in Table 3. It should be noticed, however, that the 
IEKF update can be split in ni smaller updates running 
independently on different processors, while the same 
parallelism cannot be achieved by EKF. 

Table 3 Full update time over an Intel® Pentium M 725  
(1.6 GHz) 

Conf. EKF [s] IEKF [s] 
1 0.0024 0.0021 
2 0.0048 0.0027 

The results obtained using the second configuration are 
summarised in Table 4. 

Table 4 Statistical analysis for the second configuration: 
indexes of quality 

Conf. 2 EKF IEKF 
Max Error [m] 0.1522 0.3153 
Min Error [m] 0.0301 0.0314 
Mean Error [m] 0.0786 0.1176 
Converg. Rate 35 22 
% Failure 1 2 

Table 5 Statistical analysis for the first configuration:  
indexes of quality 

Conf. 1 MLE IEKF 
Max Error [m] 0.1171 0.1490 
Min Error [m] 0.0540 0.0172 
Mean Error [m] 0.0805 0.0715 

Table 6 Statistical analysis for the second configuration: 
indexes of quality 

Conf. 2 MLE IEKF 

Max Error [m] 0.2256 0.3153 
Min Error [m] 0.0568 0.0314 
Mean Error [m] 0.1041 0.1176 

This table collects the indexes of qualities for this experiment. 
In this case, in which anchors were deployed so that collinear 
arrangements were possible and a complete coverage of the 
network were not guaranteed, some differences between  
the two algorithms can be noticed. In particular, while  
the centralised algorithm is able to localise all nodes, the 
decentralised one does not provide a good estimation for  
node 4. This can be explained with the fact that node 4 is on 
the border of the network. As a consequence, having data 
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coming only from one side, its estimation is more susceptible 
to biases. Note also that such anchors deployment implies a 
limited percentage of failures. 

From a computational point of view, it can be notice 
from Table 3 that the execution time of the EKF update 
grows exponentially, as the number of nodes increases. 

5.5 IEKF vs. MLE 
Here a comparison of the proposed Interlaced Extended 
Kalman Filter against the centralised Maximum-Likelihood 
Estimator (MLE) proposed in Patwari et al. (2003) is 
provided. Let us note that, in order to use the software 
provided by the authors of Patwari et al. (2003), the real 
data collected by Motes needed to be adjusted. In detail, all 
missing observations have been replaced with a reliable 
estimation of the real distance as the provided code did not 
take into account failure in the observing process. 

6 Conclusions 

In this paper a decentralised IEKF to solve the localisation 
problem in sensor networks has been proposed. The algorithm, 
working in a decentralised fashion, provides an accurate 
estimation with an acceptable computational complexity. 
Several experiments have been executed in order to prove its 
effectiveness. A comparison with a centralised version of the 
Extended Kalman Filter has been provided and typical 
behaviours for both algorithms, centralised and decentralised, 
have been shown. Furthermore, a statistical analysis over 100 
trials for each configuration has been performed to validate the 
robustness of the decentralised IEKF. 

According to the experimental results, the centralised EKF 
performs, in the average, slightly better. This behaviour can be 
related to the more complete interpretation of data given by a 
centralised approach. However, the decentralised IEKF gives 
similar results with a significant reduction of the computational 
complexity. Therefore, the IEKF, working in a decentralised 
fashion, turns out to be a robust as well as a flexible 
framework, suitable to the collaborative processing paradigm 
typical of the sensor network philosophy. 

Several interesting challenges still remain for future works. 
First of all, an analysis to evaluate the tracking capability of the 
proposed algorithm, when a target is moving within the 
network, will be faced. Successively, these results will be 
integrated to face the problem of closing the control loop for a 
robot moving within the networks. 

References 
Bahl, P. and Padmanabhan, V.N. (2000) ‘Radar: An in-building 

RF-based user location and tracking system’, INFOCOM, 
Vol. 2, pp.775–784. 

Biswas, P., Liang, T-C., Toh, K-C., Ye, Y. and Wang, T-C. (2006) 
‘Semidefinite programming approaches for sensor network 
localization with noisy distance measurements’, IEEE 
Transaction on Automation Science and Engineering, Vol. 3. 

Bose, P., Morin, P., Stojmenovic, I. and Urrutia, J. (2001) ‘Routing 
with guaranteed delivery in ad hoc wireless networks’, 
Wireless Networks, Vol. 7, No. 6, pp.609–616. 

Bulusu, N., Bychkovskiy, V., Estrin, D. and Heidemann, J. (2002) 
‘Scalable, ad hoc deployable RF-based localization’, Grace 
Hopper Celebration of Women in Computing Conference 
2002, Vancouver, British Columbia, Canada, University of 
California at Los Angeles. 

Doherty, L., Ghaoui, L.E. and Pister, K.S.J. (2001) ‘Convex 
position estimation in wireless sensor networks’, Proceedings 
of IEEE Infocom. 

Doucet, A., de Freitas, J. and Gordon, N. (2001) Sequential 
Montecarlo Methods in Practice, SpringerVerlag, NewYork. 

Eren, T., Goldenberg, D., Whitley, W., Yang, Y., Morse, A., 
Anderson, B. and Belheumer, P. (2004) ‘Rigidity computation 
and randomization of network localization’, Proceedings of 
IEEE Conference on Computer Communication (Infocom 
2004). 

Glielmo, L., Setola, R. and Vasca, F. (1999a) ‘An interlaced 
extended kalman filter’, IEEE Transactions on Automatic 
Control, Vol. 44, No. 8, pp.1546–1549. 

Glielmo, L., Setola, R. and Vasca, F. (1999b) ‘Interlaced  
extended kalman filter as deterministic nonlinear observer’, 
Proceedings of European Control Conference ECC'99, 
Karlsruhe, Germany. 

Jackson, B. and Jordán, T. (2005) ‘Connected rigidity matroids and 
unique realizations of graphs’, Journal of Combinatorial 
Theory Ser. B, Vol. 94, No. 1, pp.1–29. 

Kalman, R. (1960) ‘A new approach to linear filtering and 
prediction problems’, Transactions ASME Journal of Basic 
Engineering, Vol. 82, pp.35–44. 

Kuhn, F., Wattenhofer, R., Zhang, Y. and Zollinger, A. (2003) 
‘Geometric ad-hoc routing: of theory and practice’,  
Twenty-second ACM Symposium on Principles of Distributed 
Computing (PODC). 

Moore, D., Leonard, J., Rus, D. and Teller, S. (2004)  
‘Robust distributed network localization with noisy  
range measurements’, SenSys '04: Proceedings of the  
2nd International Conference on Embedded Networked 
Sensor Systems’, ACM Press, New York, pp.50–61. 

Patwari, N., III, A.O.H., Correal, M.P.N. and O’Dea, R.J. (2003) 
‘Relative location estimation in wireless sensor networks’, 
IEEE Transactions on Signal Processing, Vol. 51, No. 8, 
pp.2137–2148. 

Roumeliotis, S. and Bekey, G. (2002) ‘Distribuited multirobot 
localization’, IEEE Transactions on Robotics and 
Automation, Vol. 18, No. 5, pp.781–795. 

Stojmenovic, I. (2002) ‘Position-based routing in ad hoc 
networks’, IEEE Communication Magazine, Vol. 40,  
pp.128–134. 

Whitehouse, K., Karlof, C., Woo, A., Jiang, F. and Culler, D. 
(2005) ‘The effects of ranging noise on multihop localization: 
an empirical study’, International Symposium on Information 
Processing in Sensor Networks, pp.73–80. 

Yedavalli, K., Krishnamachari, B., Ravula, S. and Srinivasan, B. 
(2005) ‘Ecolocation: a sequence based technique for  
RF localization in wireless sensor networks’, The  
4th International Conference on Information Processing in 
Sensor Networks (IPSN 2005), Los Angeles, CA. 


