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Abstract—Wireless Sensor Networks (WSNs) are at the forefront of emerging technologies due to the recent advances in

Microelectromechanical Systems (MEMSs). The inherent multidisciplinary nature of WSN attracted scientists coming from different

areas stemming from networking to robotics. WSNs are considered to be unattended systems with applications ranging from

environmental sensing, structural monitoring, and industrial process control to emergency response and mobile target tracking. Most of

these applications require basic services such as self-localization or time synchronization. The distributed nature and the limited

hardware capabilities of WSN challenge the development of effective applications. In this paper, the self-localization problem for

sensor networks is addressed. A distributed formulation based on the Information version of the Kalman Filter is provided. Distribution

is achieved by neglecting any coupling factor in the system and assuming an independent reduced-order filter running onboard each

node. The formulation is extended by an interlacement technique. It aims to alleviate the error introduced by neglecting the cross-

correlation terms by “suitably” increasing the noise covariance matrices. Real experiments involving MICAz Mote platforms produced

by Crossbows along with simulations have been carried out to validate the effectiveness of the proposed self-localization technique.

Index Terms—Sensor networks, distributed applications, distributed network.

Ç

1 THE SELF-LOCALIZATION PROBLEM IN

SENSOR NETWORKS

A sensor network consists of a collection of nodes
deployed in an environment that cooperate to perform

a task. Each node, which is equipped with a radio
transceiver, a microcontroller, and a set of sensors, shares
data to reach the common objective. Sensor networks
provide a framework in which, exploiting the collaborative
processing capabilities, several problems can be faced and
solved in a new way. However, it comes along with several
challenges such as limited processing, storage and commu-
nication capabilities, as well as limited energy supply and
bandwidth. Performing a partial computation locally on
each node, and exploiting internode cooperation, is the
ideal way to use sensor networks. Unfortunately, this
modus operandi is highly constrained by the reduced
hardware capabilities as well as by the limited energy
resources that makes communication very expensive in
terms of lifetime for a node. As a consequence, these
constraints must be taken into account when developing
algorithms able to operate in a distributed fashion.

Sensor networks can be of interest to different areas of
application, ranging from environmental monitoring [9],
[41], civil infrastructures [23], [27], medical care [38], [32] to
home and office applications [39], [25]. In each field, the
deployment of a sensor network has provided interesting
advantages. For instance, in the context of environmental
monitor, the introduction of a sensor network made it
possible to keep environments intrinsically threatening for

human beings [41] under surveillance, or in the context of
medical care, it made it possible to remotely monitor the
health condition of patients by continuously extracting
clinical relevant information [32].

However, in order to build these applications, some basic
services, such as time synchronization or nodes localization,
are generally required. In fact, basic middle ware services,
such as routing, often rely on location information, e.g.,
geographic routing [5], [40], [24]. Specifically, the localiza-
tion problem in sensor networks consists of finding out the
locations of nodes with regard to any topology or metric of
interest. This problem turns out to be difficult to solve. In
fact, in [21], [14], it was proved that a sufficient condition for
a sensor network to be localizable cannot be easily
identified. This holds even when considering the avail-
ability of perfect measurements. Further, several analyses
showed that having reliable ranging information is fairly
practical [42], [44], [2], especially when using the received
signal strength indication (RSSI).

In this paper, a distributed formulation based on the
Information version of the Kalman Filter is provided to
deal with the self-localization problem in sensor networks.
Distribution is achieved by neglecting any coupling factor
in the system and assuming an independent reduced-
order filter running onboard each node. The error
introduced by this assumption is then mitigated by
increasing the noise covariance matrices. This formulation
is particularly convenient in all those scenarios where the
dimension of the state space is lower than the dimension
of the observations. Indeed, this is the case of the
proposed sensor network scenario, where the dimension
of the state space for each node is equal to 2, while the
number of observations is strictly related to the number of
nodes deployed into the environment.

The rest of the paper is organized as follows: In Section 2,
the state of the art for the localization problem in sensor
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networks is given. In Section 3, some theoretical insights
about the estimation problem in a probabilistic framework
are provided. In Section 4, the interlacement technique is
described. In Section 5, the sensor network scenario
exploited in this work is detailed. In Section 6, the
formulation of the information filter for the adopted
scenario is proposed. In Section 7, the performance analysis
is depicted, while in Section 8, the experimental results are
described. In Section 9, the analysis of the computational
complexity is detailed. Finally, in Section 10, we conclude
the paper.

2 STATE OF THE ART

A taxonomy of localization algorithms for sensor networks
can be drawn according to the computational organization,
i.e., centralized and distributed, to the mechanism adopted
for estimating location, i.e., range-based or range-free, and
finally, with regard to the availability of anchors nodes, i.e.,
anchor-based or anchor-free.

Centralized algorithms exploit a central computer to
perform all the complex computations using information
gathered by nodes [12], [36], [6]. Distributed algorithms
dispense the computation over the network, allowing each
node to perform locally and compensating for the lack of
global knowledge through an intensive collaborative
processing [28], [11], [10]. Both schemes offer advantages
and drawbacks. Centralized algorithms provide interesting
performance but they lack in scalability and robustness.
Distributed algorithms provide high robustness and scal-
ability but the development of effective collaborative
processing algorithms is challenging.

Range-based algorithms exploit point-to-point distances
or angle estimates in order to perform the localization task
[33], [37], [30]. Range-free algorithms do not make any
assumption about the availability or reliability of this
information [20], [26], [44]. Although range-free approaches
are appealing as a cost-effective alternative to more
expensive range-based approaches, their performance may
lack in accuracy.

Anchor-based algorithms rely on the availability of
location information for some special nodes in order to
localize the network [15], [35]. Anchor-free methods
determine the geometry of the network simply by exploiting
local interaction among nodes [34], [45]. Anchor-based
algorithms have the advantage of directly localizing nodes
within a global reference frame, but their accuracy is
affected by the number of anchor nodes and their distribu-
tion in the sensor field [7]. Conversely, anchor-free methods
scale better and do not require expensive hardware,
although only relative location estimates can be provided.

Centralized algorithms represent the first attempt to
solve the localization problem in sensor networks. In [12],
the authors propose the semidefinite programming ap-
proach (SDP) to solve the localization problem. The key idea
is to model geometric constraints between nodes as linear
matrix inequalities (LMIs) and then use the semidefinite
programming theory to solve it. The result is a bounding
region for each node, representing feasible locations where
nodes are supposed to be. Although using a set of convex
constraints in order to estimate the position of a node is

very elegant, it turns out to be inaccurate as constraints do
not use precise data range. Moreover, the algorithm
provides a good estimation only when having anchors
densely deployed on the boundary of the sensor network, a
condition that cannot always be guaranteed. The SDP
approach is extended to deal with noisy distance measure-
ments by taking advantage of an additional technique to
mitigate inaccuracies [3]. In fact, the solution provided by
the SDP, though not accurate, represents by the authors a
good starting point for a gradient descent method.
Furthermore, numerical results show that by means of this
improvement, it is possible to obtain a solution very close to
the optimal one. However, the distributed formulation is
the result of a clusterization and a local execution of the
algorithm within each subset. Therefore, the computational
complexity is merely mitigated reducing the number of
nodes but the approach still remains almost centralized. In
[36], the authors propose an algorithm that uses connectiv-
ity information, i.e., which nodes are within the commu-
nication range of which others, to derive the locations of the
nodes in the network. This algorithm is based on multi-
dimensional scaling (MDS), a set of data analysis techniques
that displays the structure of distance-like data as a
geometrical picture [4]. It can be broken down into three
steps. Starting with the given network connectivity in-
formation, an all-pairs shortest path algorithm is run to
roughly estimate the distance between each possible pair of
nodes. Then, the multidimensional scaling is applied over
these data to derive node locations. Finally, location
estimates are normalized with respect to nodes whose
position is known.

Distributed algorithms better fit the inherent collaborative
nature of sensor networks. In [28], the authors developed an
algorithm focused on providing more robust local maps. The
idea is to split the problem into a subset of smaller regions in
which the localization is performed taking advantage of the
probabilistic notion of robust quadrilaterals. A robust quad is a
set of four nodes fully connected by distance measurements
and well-spaced in such a way that no ambiguity can arise,
even when in the presence of noise. The algorithm merges the
subregions using a coordinate system registration procedure.
Such a procedure maps local reference systems into a global
one providing the best fitting matrix when in presence of a set
of common nodes. An optional optimization step can be
executed in order to refine the local map first. The weakness
of this approach, as pointed out by the same authors, is that
under conditions of low node connectivity or high measure-
ment noise, the algorithm may be able to localize only a
reduced number of nodes. In [10], the authors propose an
approach, where localization is performed by exploiting
clustering information. Starting from locally aware anchors,
an initial set of calibrated nodes is built. This set is then
expanded to include iteratively all the cluster heads, i.e., the
representative node for the cluster. Due to the iterative nature
of this approach, a refining step is required in order to
provide reliable location estimates. Once the cluster heads
have been fully localized, the remaining follower nodes, i.e.,
noncluster head nodes, can be localized.

Range-free algorithms instead may offer an alternative
that anytime distance information is not available, due to the
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stringent hardware limitations. In [20], a range-free localiza-
tion algorithm called APIT is proposed. In this work, the
environment is first isolated into triangular regions defined
by beacons: localization is achieved by checking whether a
node is inside or outside of these regions. Combinations of
anchor positions can be used to reduce the diameter of the
estimated area. Although an interesting insight on how
localization error affects a variety of location-dependent
applications such as geographical routing or target tracking
is provided, an impractical number of beacons might be
required to achieve satisfactory performances. In [44], a
sequence-based RF localization algorithm called Ecolocation
is proposed. The key idea is to determine the location of
unknown nodes by examining the ordered sequence of
received signal strength (RSS) measurements taken at
multiple reference nodes. The authors propose a con-
straint-based approach that provides for robust location
decoding even in the presence of random RSS fluctuations
due to multipath fading and shadowing. However, the
algorithm performance is heavily conditioned by the
number of available reference nodes. In [8], the authors
propose an RF-based distributed localization method, where
location is estimated by simply averaging the positions of all
the anchors it is connected to. Obviously, the accuracy of the
estimation is strictly related to the density of anchors
deployed in the environment and the density required to
obtain an acceptable estimation is fairly practical.

Anchor-free algorithms may finally represent an alter-
native solution in case prior knowledge about location is not
available and an estimation with regard to a global
reference frame is not required. In [34], the authors propose
the Anchor-Free Localization (AFL) algorithm, an algorithm
where all nodes concurrently calculate and refine their
coordinate information. The key idea is the introduction of
fold freedom: a fold-free embedding of a graph is an
embedding where every cycle has the correct clockwise/
counterclockwise orientation of nodes, modulo global
reflection, with respect to the original graph. In detail,
AFL is composed of two steps. During the first step, a
folder-free graph embedding is computed starting from the
original embedding and selecting five ad hoc reference
nodes used to approximate the polar coordinate of any
other node. Successively, a mass-spring-based optimization
is performed in order to correct and balance localized
errors. In [45], an anchor-free node localization protocol,
which exploits clusterization to achieve scalability, is
proposed. Such a protocol consists of three steps: network
bootstrapping, local position discovery, and global localiza-
tion. During the first step, clusters are identified and a
“breadth-first spanning tree” rooted at the head of each
cluster is performed. Since each node is able to measure
distances from its neighbors (by exploiting some TOA
technique) and a route exists from it to the cluster headset,
all local distance informations are sent to the cluster heads.
This information will be used during the second step to
build a local map at each cluster head. Finally, in the third
step, cluster heads collaborate in order to obtain a global
map of the network. Such a global coordinate system can be
built from the local maps by simply exploiting matrix
rotations, translations, and mirroring.

In this paper, a novel distributed, range-based algorithm,
namely the Interlaced Extended Information Filter (IEIF), is

proposed. Starting from a centralized formulation, distribu-
tion is achieved by neglecting any coupling factor in the
system and assuming an independent reduced-order filter
running onboard each node. This formulation is succes-
sively extended by an interlacement technique aiming to
alleviate the error introduced by neglecting the cross-
correlation terms by “suitably” increasing the noise covar-
iance matrices. The proposed algorithm can provide global
localization by assuming anchors are available. In the same
way, also relative localization among nodes can be achieved
by relaxing the assumption of anchors availability. The
effectiveness of this distributed approach has been thor-
oughly investigated by experiments carried out with
MICAz Mote platforms produced by Crossbows, while its
scalability has been analyzed by means of simulations.

3 THEORETICAL BACKGROUND

3.1 Bayesian Framework

The probability theory provides a suitable framework for
modeling the self-localization problem in sensor networks.
Let us consider a system described by the following set of
equations:

xk ¼ fðxk�1; uk; wkÞ;
zk ¼ hðxk; vkÞ;

ð1Þ

where xk is a stochastic variable representing the locations
of the nodes, uk is the control input, wk and vk are noises
that affect the system, while fð�Þ and hð�Þ are mathematical
relations that characterize the state transition and the
observation zk, respectively.

In the probabilistic context, the localization problem
consists of computing the probability distribution
pðxkjZk; UkÞ for all times k. This probability distribution
describes the joint posterior density of the sensor locations
(xk) given the recorded observations (Zk) and control
inputs (Uk) up to time k. To apply this approach in a real
context, it is often required to perform the above-men-
tioned computation online. Therefore, a recursive formula-
tion should be provided in terms of Bayesian filter,
graphically depicted in Fig. 1.

The idea is to provide at each time step k a new estimate
by combining the available estimate of the joint posterior
distribution pðxk�1jZk�1; Uk�1Þ at time k� 1, with the control
uk and the observation zk. In this way, both the state
transition model and the observation model, describing,
respectively, the stochastic effects of the control input and
observation, are required.

From a probabilistic point of view, the state transition
model can be described in terms of the joint prior density
pðxkjxk�1; ukÞ. Such probability distribution exploits that the
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state transition is assumed to be a Markov process in which
the next state xk depends only on the immediately
preceding state xk�1 and the applied control uk and is
independent of the observations.

On the other hand, the observation model describes the
probability of retrieving an observation zk when the sensor
locations are known, and is generally stated in the form
pðzkjxkÞ.

The localization algorithm can be implemented in a
standard two-step recursive prediction (time update)

pðxkjZk�1; UkÞ ¼
Z

�

pðxkjxk�1; ukÞpðxk�1jZk�1; Uk�1Þdxk�1

ð2Þ

and correction (measurement update) form

pðxkjZk; UkÞ ¼
pðzkjxkÞpðxkjzk�1; UkÞ

pðzkjZk�1; UkÞ
: ð3Þ

Equations (2) and (3) provide a recursive procedure for
calculating the joint posterior pðxkjZk; UkÞ; however, they
cannot be implemented on a digital computer in their
general form stated above, as the joint posterior over the
state space is a density over a continuous space, hence, has
infinitely many dimensions. Therefore, any effective loca-
lization algorithm has to resort to additional assumptions.

3.2 The Kalman Filter

A common approach is represented by the use of Kalman
filter [22]. In this context, a linear or linearized system
model is required:

xk ¼ Fkxk�1 þBkuk þ wk;
zk ¼ Hkxk þ vk;

ð4Þ

where wk � Nð0; QkÞ, vk � Nð0; RkÞ, and x0 � Nðx̂0; P0Þ are
mutually independent Gaussian variables for each pair of
time instant ðk; k0Þ. The joint posterior pðxkjZk; UkÞ is
modeled by a unimodal Gaussian density. The mode of
this density (x̂k) yields the current positions of the nodes,
and the variance (Pk) represents the current uncertainty. As
only these two parameters have to be computed to
propagate uncertainty, there is no need to discretize the
state space. In this way, the prediction becomes

x̂kjk�1 ¼ Fkx̂k�1jk�1 þBuk;
Pkjk�1 ¼ FkPk�1jk�1F

T
k þQk;

ð5Þ

while the correction requires the computation of the well-
known Kalman gain matrix

Kk ¼ Pkjk�1H
T
k

�
HkPkjk�1H

T
k þRk

��1 ð6Þ

before update the estimate

x̂kjk ¼ x̂kjk�1 þKkðzk �Hkx̂kjk�1Þ;
Pkjk ¼ Pkjk�1 �Kk

�
HkPkjk�1H

T
k þRk

�
KT
k :

ð7Þ

The advantage of Kalman filter lies in its efficiency and
in the high accuracy that can be obtained; however, it is not
able to cope with high nonlinear system and multimodal
distributions. Therefore, in most practical situation, Kalman
filter cannot be applied. Instead, one is forced to use

approximations or suboptimal solutions. Over the years, a
large number of approximate nonlinear filters have been
proposed in the literature [13]. Some are fairly general,
while others are more tailored to a particular application.

Here, only analytic approximations have been consid-
ered: in this category, it is included the Extended Kalman
Filter (EKF). The main feature of this filter is that it
linearizes the nonlinear functions in the state transition and
observation models. The EKF is derived for nonlinear
systems with additive noise

xk ¼ fðxk�1; ukÞ þ wk;
zk ¼ hðxkÞ þ vk;

ð8Þ

where wk and vk are mutually independent, zero-mean
white Gaussian random sequences, having covariance
matrices Qk and Rk, respectively. The nonlinear functions
fð�Þ and hð�Þ are approximated by the first term in their
Taylor series expansion. The joint posterior density is
approximated by a Gaussian density and computed
recursively as follows:

. Prediction

x̂kjk�1 ¼ fðx̂k�1jk�1; ukÞ;

Pkjk�1 ¼ JfxPk�1jk�1J
f
x

T þQk:
ð9Þ

. Update

Kk ¼ Pkjk�1J
h
x

T �
JhxPkjk�1J

h
x

T þRk

��1
;

x̂kjk ¼ x̂kjk�1 þKk zk � hðx̂kjk�1Þ
� �

;

Pkjk ¼ Pkjk�1 �Kk

�
JhxPkjk�1J

h
x

T þRk

�
KT
k ;

ð10Þ

where Jfx and Jhx are the Jacobians of the nonlinear
functions fð�Þ and hð�Þ, respectively.

As only Kalman filters are used in the sequel, only these
techniques have been reported due the space limit;
however, a complete review can be found in [13].

3.3 The Information Filter

An Information Filter (IF) is essentially a Kalman Filter (KF)
expressed in terms of measures of information about the
parameters (state) of interest rather than direct state
estimates and their associated covariances [19]. The two
key information-analytic variables are the information matrix
and the information state vector, where the term “informa-
tion” is used according to the Fisher definition.

The Fisher information matrix �k is the amount of
information that an observable random variable z carries
about an unobservable parameter x upon which the
likelihood function of z, LðxÞ ¼ pðz j xÞ, depends. It can
be derived as the covariance of the score function, that is,
the partial derivative, with respect to some parameter x, of
the logarithm (commonly the natural logarithm) of the
likelihood function. If the observation is z and its like-
lihood is LðxÞ ¼ pðz j xÞ, then the score SkðxÞ can be
described as follows:

SkðxÞ ¼ rx ln pðzk j xkÞ ð11Þ

¼ rx pðzk j xkÞ
pðzk j xkÞ

: ð12Þ
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Moreover, being the expectation of the score:

E½SkðxÞ� ¼
Z rx pðzk j xkÞ

pðzk j xkÞ
pðzk j xkÞ dzk ð13Þ

¼ rx

Z
pðzk j xkÞ dzk ð14Þ

¼ rx 1 ¼ 0: ð15Þ

The Information matrix �k is simply the second-order

moment of the score function SkðxÞ, as follows:

�k ¼ E½SkðxÞSkðxÞT � ð16Þ
¼ E½frx ln pðzk j xkÞgfrx ln pðzk j xkÞgT �: ð17Þ

Furthermore, if the following regularity condition holds:Z
Hxðpðzk j xkÞÞ ¼ rxrT

x pðzk j xkÞ ¼ 0; ð18Þ

where Hx is the square matrix of the second-order partial

derivatives (i.e., Hessian Matrix), the Information matrix �k

can be also written as

�k ¼ �E
�
rxrT

x ln pðzk j xkÞ
�
: ð19Þ

At this point, when the likelihood function pðz j xÞ is a

Gaussian distribution and the posterior conditional distribu-

tion is Gaussian as well, described as pðxk j zÞ � N ðx̂k; PkÞ,
then it can be proved [29] that the Information Matrix is

equal to the inverse of the covariance matrix Pk as follows:

�k ¼ P�1
k : ð20Þ

Likewise, the information state vector yk can be easily

derived as the product of the inverse of the information

matrix and the state estimate as follows:

yk ¼ �k xk ð21Þ
¼ P�1

k xk: ð22Þ

The information filter formulation can be easily derived

from the Kalman Filter formulation under the assumption

of Gaussianity previously stated. In particular, by perform-

ing the substitutions given in (22) and (20), the following set

of equations is obtained:

. Prediction

�kjk�1 ¼
�
Fkð�k�1jk�1Þ�1FT

k þQk

��1
;

Lkjk�1 ¼ �kjk�1Fk�
�1
k�1jk�1;

ŷkjk�1 ¼ Lkjk�1ŷk�1jk�1 þ�kjk�1Bkuk:

ð23Þ

. Estimation

�kjk ¼ �kjk�1 þ �k;

ŷkjk ¼ ŷkjk�1 þ ik;
�k ¼ HT

k R
�1
k Hk;

ik ¼ HT
k R
�1
k zk:

ð24Þ

The information filter can be extended to a linearized

estimation algorithm for nonlinear system, the Extended

Information Filter (EIF). The idea is to apply the analytic
approximations used in EKF and the substitutions of IF to
build up an estimation method for nonlinear systems. The
EIF presents several interesting features, among the others
an easy initialization of matrices and vectors, a reduced
computational load, and aptitude to be distributed for
parallel computation. The EIF equations can be found as
follows:

. Prediction

�kjk�1 ¼
�
Jfx ð�k�1jk�1Þ�1Jfx

T þQk

��1
;

ŷkjk�1 ¼ �kjk�1fðx̂k�1jk�1; ukÞ:

. Estimation

�kjk ¼ �kjk�1 þ �k;

ŷkjk ¼ ŷkjk�1 þ ik;

�k ¼ Jhx
T
R�1
k Jhx ;

ik ¼ Jhx
T
R�1
k

�
zk � hðx̂kjk�1Þ þ Jhx x̂kjk�1

�
:

ð25Þ

A more comprehensive description of the information filter
derivation is given in [29].

4 ON THE INTERLACEMENT OF EKF AND EIF

The interlacement technique has been developed [18] to
reduce the computational load of a nonlinear filter by
means of splitting the estimation of the state variables into
parallel subfilters. The key idea is derived from the
multiplayers dynamic game theory, where each player
chooses its own strategy as the optimal response to the
strategy adopted by the other players. In the framework of
estimation, players are represented by subfilters, strategy
by estimate, whereas the optimal response depends on the
estimation algorithm. The interlacement technique can be
applied both to the EKF and the EIF, as detailed below.

4.1 Interlaced Extended Kalman Filter

The Interlaced Extended Kalman Filter (IEKF) has been
introduced to distribute the estimate of an EKF over a
network of processors, each one devoted to estimate a
subspace of the state variables minimizing the loss of cross-
correlation links. For the sake of clarity, let us consider a
system whose model can be decomposed into two
subsystems and rewritten as (for the first filter, i ¼ 1 and
j ¼ 2, while for the second, i ¼ 2 and j ¼ 1):

x
ðiÞ
k ¼ f ðiÞ

�
x
ðiÞ
k�1; x

ðjÞ
k�1; uk

�
þ wðiÞk ;

z
ðiÞ
k ¼ hðiÞ

�
x
ðiÞ
k ; x

ðjÞ
k

�
þ vðiÞk :

ð26Þ

The IEKF equations proceed from the EKF filter equa-
tions (see Fig. 2). At the kth step, each subfilter forms a
prediction exploiting both its own estimation and the one of
the other filter, according to the following equation:

x̂
ðiÞ
kjk�1 ¼ f

ðiÞ�x̂ðiÞk�1jk�1; x̂
ðjÞ
k�1jk�1; uk�1

�
; ð27Þ

P
ðiÞ
kjk�1 ¼ J

f;i
x;iP

ðiÞ
k�1jk�1J

f;iT

x;i þ ~Q
ðiÞ
k ; ð28Þ
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where

~Q
ðiÞ
k ¼ Q

ðiÞ
k þ J

f;i
x;jP

ðjÞ
k�1jk�1J

f;iT

x;j ; ð29Þ

being Jf;ix;i and Jf;ix;j the Jacobians of the relation f ðiÞð�Þ with

respect to x
ðiÞ
k and x

ðjÞ
k .

After the prediction step, the estimates elaborated by
the two subfilters are exchanged and used during the
update step.

In this step, the observation prediction is formed and
compared with the measure zk provided by the system:

x̂
ðiÞ
kjk ¼ x̂

ðiÞ
kjk�1 þK

ðiÞ
k

�
zk � hðiÞ

�
x̂
ðiÞ
kjk�1; x̂

ðjÞ
kjk�1

��
; ð30Þ

P
ðiÞ
kjk ¼ P

ðiÞ
kjk�1 �K

ðiÞ
k J

h;i
x;i P

ðiÞ
kjk�1; ð31Þ

where the Kalman gain is computed applying the relation

K
ðiÞ
k ¼ P

ðiÞ
kjk�1J

h;i
x;i

T �
Jh;ix;i P

ðiÞ
kjk�1J

h;i
x;i

T þ ~R
ðiÞ
k

��1

in which

~R
ðiÞ
k ¼ Rk þ Jh;ix;jP

ðjÞ
kjk�1J

h;i
x;j

T
; ð32Þ

where Jh;ix;j and Jh;ix;j are the Jacobians of hðiÞð�Þ with respect
to x

ðiÞ
k and x

ðjÞ
k .

From (29) and (32), it can be noticed that the process and
measurement noise covariance matrices Q

ðiÞ
k and R

ðiÞ
k are

suitable increased by addition of positive semidefinite
quantities that take into account the error introduced by
the decoupling operation. It is easy to recognize that the term
added toR

ðiÞ
k in (32) represents the cross correlation between

the filters due to innovation process, while the term added to
Q
ðiÞ
k in (29) is related to the cross correlation induced by the

propagation process.

4.2 Interlaced Extended Information Filter

The IEIF is the counterpart of the IEKF in the information
space. As already mentioned, the IEF is suitable for
distributing the estimation process over parallel computa-
tion units, due to the loose correlation between the elements
of the information vector. In the information space, indeed,
the correlation between information variables, which are
not explicitly connected or directly involved in a measure-
ment, is not represented, whereas the covariance matrix
explicitly stores this relation in the corresponding off-
diagonal entries. Apart from this rough correlation between
information variables, there is still a coupling factor that has

to be taken into account even in the presence of distributed
implementation of EIF to prevent the divergence of the filter
itself. In order to consider this coupling factor, the IEIF is
introduced in this work. Let us consider again a system
whose model can be decomposed into two subsystems
having model equations expressed by (26). The IEIF schema
is represented in Fig. 2, after substituting IEKF with IEIF
while recalling the relation given by (20). At each time, the
filter computes a prediction and estimation step exploiting
the equations below:

. Prediction

�
ðiÞ
kjk�1 ¼

�
Jf;ix;i
�
�
ðiÞ
k�1jk�1

��1
Jf;ix;i

T þ ~Qk

��1
;

ŷ
ðiÞ
kjk�1 ¼ �kjk�1f

�
x̂
ðiÞ
k�1jk�1; x̂

ðjÞ
k�1jk�1; uk

�
;

~Q
ðiÞ
k ¼ Q

ðiÞ
k þ J

f;i
x;j

�
�
ðjÞ
k�1jk�1

��1
Jf;i

T

x;j :

ð33Þ

. Estimation

�
ðiÞ
kjk ¼ �

ðiÞ
kjk�1 þ �

ðiÞ
k ;

ŷ
ðiÞ
kjk ¼ ŷ

ðiÞ
kjk�1 þ i

ðiÞ
k ;

�
ðiÞ
k ¼ J

h;i
x;i

T ~R
ðiÞ�1
k Jh;ix;i ;

i
ðiÞ
k ¼ J

h;i
x;i

T ~R
ðiÞ�1
k z

ðiÞ0
k ;

~R
ðiÞ
k ¼ R

ðiÞ
k þ J

h;i
x;j

�
�
ðjÞ
kjk�1

��1
Jh;ix;j

T
;

z
ðiÞ0
k ¼ �

ðiÞ
k þ J

h;i
x;i x̂

ðiÞ
kjk�1 þ J

h;i
x;j x̂

ðjÞ
kjk�1;

�
ðiÞ
k ¼ z

ðiÞ
k � hðiÞ

�
x̂
ðiÞ
kjk�1; x̂

ðjÞ
kjk�1

�
:

ð34Þ

After every single step, the subfilters exchange their results
in terms of best estimate and the associate covariance. The
estimate is used to compute the expected measurement,
whereas the covariance matrix is involved in the computa-
tion of the matrices ~Qk and ~Rk. These matrices have the
same meaning introduced for IEKF and convey the
coupling factor between information variables in subsys-
tems i and j.

5 SENSOR NETWORK SCENARIO

In this paper, a group of � nodes deployed on a planar
environment is considered. A typical sensor network node’s
hardware consists of a microprocessor with reduced
computational capability, a radio component, several sensor
devices, a minimal data storage unit, and a battery with
limited life. Furthermore, a few nodes are equipped with an
absolute position system device so that localization with
regard to a global frame can be obtained for the whole
network. Finally, nodes are assumed to be motionless.

The state of the node i at time k is described by its
location with respect to a global frame as follows:

x
ðiÞ
k ¼

�
p
ðiÞ
x;k p

ðiÞ
y;k

�T
: ð35Þ

Thus, the state of the whole system is the vector obtained by
collecting the locations of all nodes:

xk ¼
�
x
ð1ÞT
k ; . . . ; x

ð�ÞT
k

�T
: ð36Þ
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5.1 System Model

Since nodes are assumed to be still, the model of the
ith node is simply given by

x
ðiÞ
k ¼ x

ðiÞ
k�1 þ w

ðiÞ
k ; ð37Þ

where w
ðiÞ
k 2 IR2 is a zero-mean white noise vector with

covariance matrix Q
ðiÞ
k .

Note that the system is naturally fully decoupled as the
state transition of a node does not depend upon other
nodes. This property turns out to be very useful for the
distributed formulation of the filter. Furthermore, the
framework allows to mix static nodes with mobile ones
simply by changing the state transition model according to
the kinematics of each sensor node [31].

5.2 Observation Model

Nodes are equipped with several sensor devices. In
particular, a way to measure internode distances is assumed
to be available. The related observation model can be
obtained considering the euclidean distance as follows:

z
ði;jÞ
k ¼ hði;jÞ

�
x
ðiÞ
k ; x

ðjÞ
k

�
þ vðiÞk ð38Þ

¼k xðiÞk � x
ðjÞ
k k þ v

ðiÞ
k ð39Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
p
ðiÞ
x;k � p

ðjÞ
x;k

�2 þ
�
p
ðiÞ
y;k � p

ðjÞ
y;k

�2
q

þ vðiÞk ; ð40Þ

where v
ðiÞ
k 2 IR is a zero-mean white noise vector with

covariance R
ðiÞ
k .

6 THE INFORMATION FILTER FOR SENSOR

NETWORKS

Due to the nonlinear nature of the observation model, the
linear information filter previously introduced cannot be
applied as it is. An extension to deal with the nonlinearity of
the observation model is required. Note that having a linear
prediction model results in a “hybrid” information filter:
with the prediction equation of a linear IF and the
estimation equation of an EIF. In the following, a
centralized formulation of the filter is proposed. Then, a
distributed one based on simplifying assumptions is
devised. However, both filters can be summarized by the
same two-stage formulation:

. Prediction

�kjk�1 ¼
�
��1
k�1jk�1 þQk

��1
;

Lkjk�1 ¼ �kjk�1��1
k�1jk�1;

ŷkjk�1 ¼ Lkjk�1ŷk�1jk�1:

ð41Þ

. Estimation

�kjk ¼ �kjk�1 þ �k;

ŷkjk ¼ ŷkjk�1 þ ik;

�k ¼ Jhx
T
R�1
k Jhx ;

ik ¼ Jhx
T
R�1
k z0k;

z0k ¼ �k þ Jhx x̂kjk�1;

�k ¼ zk � hðx̂kjk�1Þ:

ð42Þ

Differences between the centralized formulation and the
distributed formulation are merely related to the state space
dimension and to the construction of the Jacobian matrix Jhx .

6.1 Centralized EIF

In the case of the centralized formulation, the whole state of
the system as given in (36) is considered. Therefore, the
computation of the complete Jacobian matrix involves all
the interdistance measurements available over the network.
In particular, given a generic observation z

ði;jÞ
k , representing

the distance from the node i to the node j measured by the
node i, the related Jacobian row is

Jhði;jÞ ¼
�
0 J

hði;jÞ
x;i 0 J

hði;jÞ
x;j 0

�
; ð43Þ

where

J
hði;jÞ
x;i ¼ pðiÞx � pðjÞx

d

pðiÞy � pðjÞy
d

" #
¼ �Jhði;jÞx;j ð44Þ

with

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
p
ðiÞ
x � pðjÞx

�2 þ
�
p
ðiÞ
y � pðjÞy

�2
q

: ð45Þ

According to this notation, given the following set of

observations zk ¼ ½zði;jÞk ; z
ðl;jÞ
k ; z

ði;lÞ
k ; z

ðl;iÞ
k �

T among three nodes

fxi; xj; xlg, the resulting Jacobian matrix Jhx is

Jhx ¼
�
Jhði;jÞ

T

Jhðl;jÞ
T

Jhði;lÞ
T

Jhðl;iÞ
T
�T

¼

0 J
hði;jÞ
x;i 0 J

hði;jÞ
x;j 0

0 0 J
hðl;jÞ
x;l J

hðl;jÞ
x;j 0

0 J
hði;lÞ
x;i J

hði;lÞ
x;l 0 0

0 J
hðl;iÞ
x;i J

hðl;iÞ
x;l 0 0

2
6666664

3
7777775
:

ð46Þ

6.2 Distributed EIF

A distributed formulation can be introduced by means of
some simplifying assumptions. The system model is linear
and fully decoupled, thus, suitable for a distributed
implementation, while the Jacobian matrix Jhx features
some couplings. In particular, for each node i, the following
Jacobian block JhðiÞx can be considered:

JhðiÞx ¼
0 J

hði;jÞ
x;i 0 J

hði;jÞ
x;j 0

0 J
hði;lÞ
x;i J

hði;lÞ
x;l 0 0

2
4

3
5: ð47Þ

Furthermore, according to (47), it can be noticed that if a
node i considers its neighbors as anchors at each time step,
the partial derivatives of node j are always naughts for a
generic Jacobian row JhðiÞx . Therefore, the related Jacobian
block JhðiÞx becomes

JhðiÞx ¼
0 J

hði;jÞ
x;i 0 J

hði;jÞ
x;j 0

0 J
hði;lÞ
x;i J

hði;lÞ
x;l 0 0

2
4

3
5

¼
0

0

� ���� J
hði;jÞ
x;i

J
hði;lÞ
x;i

����0 0 0

0 0 0

	

¼ 0
��Jh;ix;i �� 0 0 0

h i
:
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In this way, the complete Jacobian matrix Jhx , described
in (46), turns out to be a block matrix. Therefore, the
centralized formulation can be easily decomposed into a set
of � reduced-order filters, each one run by a single node
with the aim of estimating its location with respect to
information (in terms of observations and latest estimates)
coming from the other nodes.

Furthermore, the capability of the algorithm to perform
the localization process with or without anchors can be
explained by the fact that for how the algorithm is
conceived, neighbors are always considered as anchors.
Thus, the availability of real anchors does not affect the
formulation, but the accuracy of the localization process.

6.3 Interlaced EIF

Considering the neighborhood of each node as a set of
anchors helps to distribute the formulation of the EIF.
However, at the same time, an error is introduced into the
estimation process as a consequence of this approximation.
The Interlacement technique introduced in Section 4.1 turns
out to be an effective solution to mitigate the error
introduced by this simplifying assumption. The resulting
formulation for the sensor network scenario is as follows:

. Prediction

�
ðiÞ
kjk�1 ¼

��
�
ðiÞ
k�1jk�1

��1 þQðiÞk
��1

;

L
ðiÞ
kjk�1 ¼ �

ðiÞ
kjk�1

�
�
ðiÞ
k�1jk�1

��1
;

ŷ
ðiÞ
kjk�1 ¼ L

ðiÞ
kjk�1ŷ

ðiÞ
k�1jk�1:

ð48Þ

. Estimation

�
ðiÞ
kjk ¼ �

ðiÞ
kjk�1 þ �

ðiÞ
k ;

ŷ
ðiÞ
kjk ¼ ŷ

ðiÞ
kjk�1 þ i

ðiÞ
k ;

�
ðiÞ
k ¼ J

h;i
x;i

T ~R
ðiÞ�1

k Jh;ix;i ;

i
ðiÞ
k ¼ J

h;i
x;i

T ~R
ðiÞ�1

k z
ðiÞ0
k ;

~R
ðiÞ
k ¼ R

ðiÞ
k þ

X
j2NðiÞ

Jh;ix;j
�
�
ðjÞ
kjk�1

��1
Jh;ix;j

T
;

z
ðiÞ0
k ¼ �k þ J

h;i
x;i x̂

ðiÞ
kjk�1;

�
ðiÞ
k ¼ z

ðiÞ
k � hðiÞ

�
x̂
ðiÞ
kjk�1; �

ðiÞ
k

�
;

ð49Þ

where �
ðiÞ
k ¼ fx̂

ðjÞ
kjk�1 : j 2 N kðiÞg. Note that, the interlace-

ment contribution does not add any significant complexity
to the estimation process as the Jacobian term Jh;ix;j is simply
obtained by negation of the term Jh;jx;i and the term
ð�ðjÞkjk�1Þ

�1 is broadcasted by the neighbors.

6.4 Algorithmic Derivation

From an algorithmic point of view, a possible implementa-

tion of the distributed EIF running onboard each node is

given in Algorithm 1. In detail, at each iteration k, a given

node i performs the following four steps: it listens for a pre-

fixed � amount of time waiting for new data fzðiÞk ;�
ðiÞ
k g

broadcasted by each other node within its range of visibility;

successively, it updates its estimate x
ðiÞ
k by executing the set

of equations given in (48) and (49), where the Jacobian

matrix JhðiÞ is built, as previously described in (48),

according to the collected data fzðiÞk ;�
ðiÞ
k g; finally, it notifies

to the network its latest estimate ðyðiÞkjk;�
ðiÞ
kjkÞ. Note that, no

clock synchronization is required for the sensor network;

indeed, the temporal index k for the data coming from

neighboring nodes is simply meant as the most recent

available so far.

Algorithm 1. Reduced-Order Filter

Data: fŷðiÞk�1jk�1;�
ðiÞ
k�1jk�1g

Result: fŷðiÞkjk;�
ðiÞ
kjkg

=� Data Collecting �=
fzðiÞk ;�

ðiÞ
k g  listening_procedure(�)

where

z
ðiÞ
k ¼ fz

ði;j1Þ
k ; . . . ; z

ði;jMi
Þ

k g,
�
ðiÞ
k ¼ fŷ

ðj1Þ
k�1jk�1; ð�

ðj1Þ
k�1jk�1Þ

�1; . . . ; ŷ
ðjMi Þ
k�1jk�1; ð�

ðjMi
Þ

k�1jk�1Þ
�1g

=� Updating Step �=
fŷðiÞkjk�1;�

ðiÞ
kjk�1g  

prediction_procðŷðiÞk�1jk�1;�
ðiÞ
k�1jk�1Þ

=� Estimation Step �=
fŷðiÞkjk;�

ðiÞ
kjkg  estimation_procedureðzðiÞk ;�

ðiÞ
k Þ

=� Notification Step �=
notification_procedureðŷðiÞkjk;�

ðiÞ
kjkÞ

7 PERFORMANCE ANALYSIS

Several computer simulations have been performed in
order to investigate the effectiveness of the proposed
distributed interlaced extended information filter on a large
scale. Moreover, a comparison with an interlaced extended
Kalman filter has been carried out as well. Note that in this
work, the attention is focused on the design of an
interlacement technique within the information filtering.
For this reason only, a comparison between distributed
versions of the algorithms is provided. The reader is
referred to [16], [17] for a detailed analysis concerning a
comparison with the centralized versions of the algorithms.

In particular, the following aspects of interest have been
considered:

. level of noise of observations,

. scalability of the algorithm,

while the following two indexes of quality have been used:

. estimation accuracy and

. convergence velocity.

The former is given in terms of distance between the
estimated and the real location of a node. The euclidean
distance is adopted as metric. Maximum, minimum, and
average errors computed over the whole network are
considered. The latter is given in terms of number of steps
required by the algorithm to settle around the best
estimation. This index provides an evaluation of the
“reactivity” of the algorithm.

Table 1 describes how the performance indexes vary
with respect to different levels of noise. Convergence is
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assumed to be reached when the fluctuation of the estimate
was bounded within a predefined interval, �0:5 cm. A
configuration involving 90 nodes with 30 anchors deployed
on a 30 m� 30 m environment is considered. According to
the obtained results, the accuracy of the estimation is
considerably influenced by the level of noise, while it does
not seem to significantly affect neither the convergence time
nor the percentage of failures, i.e., the number of un-
successful trials, of the algorithm.

Table 2 investigates the scalability of the proposed
algorithm. In this analysis, the level of noise is fixed to 0.1
for all the configurations. Furthermore, anchors are sup-
posed to be uniformly distributed and both the environ-
mental size and the ration between the number of nodes
and number of anchors are kept constant. According to the
obtained results, the higher is the number of nodes, the
quicker is the convergence of the algorithm. In the same
way, the number of failures decreases with an increasing
number of nodes. On the other hand, the accuracy of the
estimation is not significantly influenced by the dimension
of the sensor network, being this related to the hardware
sensing capabilities.

The algorithm might converge to alternative admissible
solutions. Indeed, given � nodes with � anchors, “symme-
trical” solutions may exist with regard to the deployment of
the anchors. In the case of perfect communication, i.e., no
packet is lost, and fully connectivity among nodes, placing
anchors on the boundary is a sufficient condition to have an
unique solution. However, in a real system, some nodes
may not be able to communicate with other nodes;
therefore, in practice, alternative plausible solutions with
respect to the available data may always exist.

8 EXPERIMENTAL RESULTS

Experimental results have been performed to validate the
proposed distributed interlaced extended information filter
in a real context. In particular, apart from the IEKF, a
comparison against a third algorithm, i.e., the ESDP
algorithm, has been considered. In detail, the ESDP algo-
rithm is an SDP relaxation approach proposed in [43] for
which the code is freely available at http://www.stanford.
edu/~yyye.

The network is composed of MICAz (MPR2400) platform,
a generation of Motes from Crossbow Technology. The
MPR2400 (2,400-2,483.5 MHz band) uses the Chipcon
CC2420, the IEEE 802.15.4 compliant, ZigBee ready radio
frequency transceiver integrated with an Atmega128L

microcontroller. It provides also a flash serial memory, as
well as a 51 pin I/O connector that allows several sensor and
data acquiring boards to be connected to it. MICAz platform
comes along with TinyOS, an open-source event-driven
operating system designed for wireless embedded sensor
networks. It features a component-based architecture, which
enables rapid innovation and implementation while mini-
mizing code size as required by the severe memory
constraints inherent in sensor networks. TinyOS component
library includes network protocols, distributed services,
sensor drivers, and data acquisition tools, all of which can
be used as is or be further refined for a custom application.

8.1 Ranging Technique

A ranging technique based on the Time of Arrival (ToA)
principle is exploited to compute internode distances. The
implementation consists of a node sending first an RF
packet and emitting an acoustic signal right after. For the
receiving node, the RF signal, whose propagation can be
assumed instantaneous, is used to trigger a timer, while the
acoustic signal, whose propagation delay is measurable, is
used to stop it. By the measurement of such a propagation
delay and by knowing the propagation velocity of the
acoustic signal, the distance is then computed.

Regarding the MICAz platform, the MTS300 and
MTS310 boards, both providing a sounder and a micro-
phone, have been exploited. The sounder is a simple 4 kHz
fixed frequency piezoelectric resonator, while the micro-
phone can be used either for acoustic ranging or for general
acoustic recording and measurement. Therefore, the RF and
acoustic (sounder) signals are exploited for the implemen-
tation of the proposed ranging technique.

The proposed ranging technique for MICAz platforms
has been thoroughly investigated in order to determine the
achievable performance. A significant amount of internode
distances (more than 200 measurements) was collected and
a statistical analysis was performed. A precision of 3 � 8 cm
with a standard deviation of 8 � 14 cm was experienced
considering distances ranging from 20 cm to 2.5 m.

In addition, experiments have been carried out to verify
whether the mutual orientation of nodes might influence
the measured distance. For such a reason, two nodes have
been arranged on the floor at the distance of 54 cm from
each other. Such a distance has been manually measured
from the sounder of the emitter to the microphone of the
receiver. Successively, data have been collected considering
different orientations of nodes, in order to simulate a
realistic random deployment on the ground. Table 3 shows
the statistic results using again more than 200 measure-
ments for each configuration. According to this analysis,
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differential mutual orientations do not significantly influ-
ence the measure of distances. However, as mentioned
above, data present a bias as well as a considerable standard
deviation that makes their use challenging.

The bias and the standard deviation describe the
uncertainty in the observing process. There are several
sources of such uncertainty. First of all, the parameters used
to characterize the propagation velocity of an acoustic wave
in the air have been considered fixed, while they change
according with humidity and temperature. Second, the
transmission protocol introduces a delay, which cannot be
taken into account, as it is not directly observable.

8.2 Deployment and Evaluation

Several network deployments have been considered for the
algorithm evaluation. Each deployment has been obtained
by taking advantage of the regularity of the flooring grid
and real locations were manually measured exploiting such
a regularity. Note that the extent of the deployment region
has been constrained by the hardware capability of the
MICAz nodes. Indeed, experiments reveal measurements to
be sufficiently reliable only within a range of approximately
2 meters. Here, results related only to two configurations
are reported.

Fig. 3 shows the first deployment, where 10 nodes are
considered. Each node is ideally within the communication

range of each other. This way, a full connected graph is
achieved.

Table 4 describes the result of the experiment involving
the first environment (Fig. 3). Three different arrangements
of anchors are considered, each one involving three nodes.
According to experimental results for this configuration,
varying the set of anchors does not significantly influence
the accuracy of estimation. In particular, the ESDP algo-
rithm has proved to perform slightly better for all the
anchors configurations. This can be explained by the fact
that being the ESDP a centralized algorithm, it can take
advantage of the full availability of information. Never-
theless, it is worthy to mention that a similar estimation
accuracy is achieved also by the other two algorithms
despite from the partial information availability. With
regard to the convergence velocity, the EIF turns out to
perform slightly better. This can be explained by the fact
that while the Kalman filter requires an initialization for the
covariance matrix P, which slows down the convergence,
the information filter does not require any initialization for
the information matrix [29].

Fig. 4 shows the second deployment, where 11 nodes are
considered. Again, each node is ideally within the commu-
nication range of each other in order to have a full
connected graph. However, it should be pointed out that
at each iteration, only a portion of the network is able to
collaborate, due to the high number of outliers occurring in
the measurement process. This implies that only partial
information is available to the nodes.

Table 5 describes the result of the experiment involving
the second environment (Fig. 4). Also in this deployment,
three different arrangements of anchors are considered,
each one involving three nodes. According to experimental
results for this configuration, varying the set of anchors still
does not significantly influence the performance. However,
a general deterioration of the estimation accuracy can be
noticed, due to the large number of packets lost, which
considerably reduces the amount of information available
for localization. Furthermore, also in this scenario, the ESDP
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algorithm has proved to perform slightly better. In

particular, the advantages related to the availability of full

information are more evident in this scenario, where a

significant loss of packets was experienced.

9 COMPUTATIONAL COMPLEXITY ANALYSIS

Here, a comparative analysis regarding the computational

complexity of both the IEIF previously introduced and the

IEKF given in Section 4.1 is proposed. In order to achieve this,

the asymptotic notation (a mathematical notation used to

describe the asymptotic behavior of functions) is considered.

Its purpose is to characterize a function behavior for very

large (or very small) inputs in a simple but rigorous way that

enables comparison to other functions [1].
Furthermore, in order to easily analyze the filter

equations, a formalism has been introduced with the aim

of describing the matrix operations and the related

computational complexity:

. SUMðNxM; NxMÞ ¼ OðN �MÞ.

. SUBðNxM; NxMÞ ¼ OðN �MÞ.

. MULðNxM; MxPÞ ¼ OðN �M � P Þ.

. INVðNxNÞ ¼ OðN3Þ.
Note that, for the sake of simplicity, the asymptotic

complexity assumed for these operations does not reflect
the most efficient implementation available so far. How-
ever, it does not affect the validity of the analysis since the
complexity of the most efficient implementations scale
approximatively the same. Furthermore, all the elementary
operations related to scalar values have been assumed with
complexity Oð1Þ.

9.1 The IEKF

The complexity of the IEKF running onboard of a node can
be summarized as in Table 6, where N is the dimension of
each node state and M is the number of measurements
(neighbors) for each node.

Three remarks are now in order:

. Only matrix operations have been taken into
account.

. The complexity of the Jacobian construction has been
neglected.

. The complexity of the observation evaluation has
been neglected.

The first observation underlines that the asymptotic behavior
of the algorithm is desired. The second observation comes
from the consideration that the computational complexity of
the Jacobian is always lighter compared to other operations.
Thus, it will be omitted for the sake of clarity. The third
observation follows the same reasoning as the second one.

9.2 The IEIF

The complexity of the IEIF running onboard of a node can
be summarized as in Table 7.

The same considerations that have been done for the

IEKF still hold here.
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TABLE 5
Second Deployment: IEIF versus IEKF versus ESDP

TABLE 6
Interlaced Extended Kalman Filter Computational Load

Fig. 4. Second deployment: three (variable) anchors—eight nodes.



9.3 IEKF versus IEIF

In order to find out the differences between the two
algorithms, the matrix operations have been compared.
Table 8, which summarizes the set of operations required by
both algorithms at each iteration, can be simplified
considering that from an asymptotical standpoint, some
operations, such as sum, subtraction, or transposition, have
a lower order than other ones, such as multiplication or
inversion.

Table 9 can be further simplified considering that from
an asymptotical point of view, the number of occurrences, if
not related to any of the parameters of interest, does not
influence the complexity of the algorithm.

Table 10 describes the subset of operations characterizing
the computational complexity of the two approaches. The

dominant operation for the IEIF can be either the multi-
plication of a matrix N �M with a matrix M �N with
complexity OðN2 �MÞ or the inversion of a matrix N �N
with complexity OðN3Þ, where N is the dimension of the
state space and M is the number of observations. Con-
versely, for the IEKF, the dominant operation can be either
the inversion of a matrix N �N with complexity OðN3Þ or
the inversion of a matrix M �M with complexity OðM3Þ.

The use of one technique over the other depends upon the
reciprocal dimension between the state space and the
observations. If the dimension of the state space is lower
than the dimension of the observations N < M, the IEIF
turns out to be computationally more efficient than the IEKF.
Conversely, if the dimension of the state space is higher than
the dimension of the observations N > M, the IEKF per-
forms better even though the complexity is the same from an
asymptotical point of view. Indeed, this is due to the fact that
several operations with cubic complexity in N are required
by the IEIF at each iteration. Note that for the proposed
sensor network scenario, the dimension of the state space for
each node is fixed to N ¼ 2, while the dimension of the
observations is strictly related to the number of nodes �
deployed into the environment. Therefore, the IEIF turns out
to be more effective than the IEKF. The same considerations
would apply even if a three-dimensional scenario (N ¼ 3) for
deployment were considered. Fig. 5 shows the computa-
tional load for the two algorithms with respect to an
increasing number of nodes. Note that in this analysis, the
dimension of the state space for each node was fixed to
N ¼ 2, the ratio between the number of nodes and the
number of anchors was kept constant and so was the size of
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TABLE 8
Computational Complexity: Comparative Table 1

TABLE 9
Computational Complexity: Comparative Table 2

TABLE 10
Computational Complexity: Comparative Table 3

TABLE 7
Interlaced Extended Information Filter Computational Load



the environment. In this way, despite the random nature of
the deployment, the number of observations available for
each node was increasing with respect to an increasing
number of nodes. According to the results given in Table 10,
the computational load for the IEKF clearly shows a cubic
trend while the computational load for the IEIF shows a
quadratic trend.

9.3.1 Special Case: Single Observation Update

Thus far, an analysis where M observations were processed
all together at each iteration has been provided. The
computational complexity can be even further reduced if
considering a single observation at a time. However, it
should be noticed that this solution has two major draw-
backs: the convergence time is significantly increased and the
accuracy of the estimation can be highly affected by the order
in which the measurement is processed, due to the nonlinear
nature of the observations. In this case, for the IEKF, the
inversion of the innovation is reduced to the inversion of a
scalar. The dominant operation is given by the multiplication
required for the computation of this scalar and its complexity
becomes linear with the dimension of the state. However,
since it has to be repeated M times, the real complexity
becomes OðN �MÞ, which is indeed significantly lower
compared to the previous one (OðM3Þ). Note that the
situation for the IEIF is completely different. In fact, even if
the computational load required for the construction of the
Innovation matrix becomes linear with the dimension of the
state, several inversions of matrices N �N are still required
at each iteration. Therefore, in this case, any potential
advantage simply vanishes.

10 CONCLUSIONS

In this paper, the IEIF for self-localization in sensor
networks has been introduced. The centralized formulation
has been distributed by neglecting any coupling factor in
the system and assuming an independent reduced-order
filter running onboard each node. The original formulation
has been successively extended by an interlacement
technique, which aims to alleviate the error introduced by
neglecting the cross-correlation terms by “suitably” increas-
ing the noise covariance matrices.

The effectiveness of the proposed formulation has been
investigated via both computer simulations and real
experiments involving the MICAz mote platforms produced
by Crossbows. In addition, a comparison with an IEKF has
been provided.

Computer simulations focused on investigating the
efficacy of the proposed algorithm in a large scale. The
obtained results evidence comparable performance under-
lining the algebraic equivalence of the two approaches.
Experimental results focused on investigating the effective-
ness of the proposed algorithm in a real scenario. Also in
this case, the obtained results evidence comparable perfor-
mance. However, according to the performed computa-
tional complexity analysis, the IEIF outperforms the IEKF
anytime the dimension of the state space is lower than the
dimension of the observations (N < M). Indeed, this is the
case of the proposed sensor network scenario, where the
dimension of the state space for each node is fixed to N ¼ 2,
while the dimension of the observations is strictly related to
the number of nodes � deployed into the environment.
Finally, the same considerations would apply even if a
three-dimensional state space were considered.
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